March 18, 1915: Chlorination at Bubbly Creek Filtration Plant

Chicago, Union Stockyards, 1908

March 18, 1915: Engineering News article. Liquid Chlorine at the Bubbly Creek Water-Filtration Plant. By C. A. Jennings. “The Bubbly Creek filter plant at the Chicago. Stock Yards set the lead in the use of hypochlorite of lime in this country for water disinfection. This was during the summer of 1908. Subsequently experiments were begun at this plant with an electrolytic cell for the production of chlorine from salt brine. These experiments were carried out very extensively and thoroughly. The writer finally concluded that in comparison with hypochlorite and liquid chlorine, the production of chlorine for water disinfection by means of an electrolytic cell was expensive, uncertain and demanded considerable attention.

Very recently a liquid-chlorine apparatus was purchased. Chlorine is received in cylinders that hold 105 lb. of the liquefied gas. From the experience gained by operating this apparatus during the past month the writer has concluded that in comparison with the use of hypochlorite at the Bubbly Creek filter plant–

  1. There is considerably less labor involved.
  2. The absorption of the gas by the water is more

rapid.

  1. There is no loss of chlorine, and smaller quantities can be used to accomplish equivalent results.
  2. There is no deterioration of the chlorine in the cylinders while using or while stored.
  3. The changing of the rate of application is easily, quickly and accurately accomplished.
  4. There is no odor of chlorine about the plant.
  5. The cost is considerably less.

Reference: Jennings, C.A. 1919. “Liquid Chlorine at the Bubbly Creek Water-Filtration Plant.” Engineering News article 73:11(March 18, 1915): 555.

Commentary: Jennings is one of the engineers who spread the myth that chlorination of water at the Bubbly Creek plant was somehow a breakthrough for water disinfection. Publications by him and the man who wrongly claimed credit for the first use of chlorine in drinking water (George A. Johnson) resulted in Dr. John L. Leal not receiving the proper credit for his work at Boonton Reservoir on the Jersey City, New Jersey water supply in 1908. The water from the Bubbly Creek plant was fed to cows and pigs and was not considered suitable for human consumption.

March 17, 1909: Chlorination at Poughkeepsie, NY

March 17, 1909: Drinking water chlorination begun at Poughkeepsie, New York. Chlorine was tested at the Poughkeepsie, New York filter plant in early February 1909 but the application of chlorine on a permanent basis at Poughkeepsie did not begin until March 17, 1909. Therefore, the Poughkeepsie water supply was the third example of chlorine disinfection in the U.S. and the first time that chlorine was used as an adjunct to slow sand filtration. George C. Whipple suggested the third application of chlorine to a water supply in a report to the City. As noted in The Chlorine Revolution: Water Disinfection and the Fight to Save Lives, Whipple was on the opposite side from Dr. John L. Leal in the two Jersey City trials. Poughkeepsie, NY is a medium-sized city that is located on the Hudson River about 70 miles north of New York City.

Whipple recommended that the coagulant preceding the slow sand filter at Poughkeepsie be replaced with chloride of lime, which began as a test on February 1, 1909. On March 17, 1909, continuous chlorination was begun using a permanent chemical feeding apparatus.

March 16, 1802: Corps of Engineers Established; 1804: Birth of Chester Averill

March 16, 1802: President Jefferson authorized to establish the Corps of Engineers. “The history of United States Army Corps of Engineers can be traced back to 16 June 1775, when the Continental Congress organized an army with a chief engineer and two assistants. Colonel Richard Gridley became General George Washington’s first chief engineer; however, it was not until 1779 that Congress created a separate Corps of Engineers. One of its first tasks was to build fortifications near Boston at Bunker Hill. The first Corps was mostly composed of French subjects, who had been hired by General Washington from the service of Louis XVI.

The Corps of Engineers as it is known today came into being on 16 March 1802, when President Thomas Jefferson was authorized to ‘organize and establish a Corps of Engineers … that the said Corps … shall be stationed at West Point in the State of New York and shall constitute a Military Academy.’ Until 1866, the superintendent of the United States Military Academy was always an engineer officer. During the first half of the 19th century, West Point was the major and, for a while, the only engineering school in the country. The Corps’s authority over river works in the United States began with its fortification of New Orleans after the War of 1812.”

Chester Averill

March 16, 1804: Birth of Chester Averill who became a Professor of Chemistry at Union College in Schenectady, New York. Averill is known for a letter that he wrote to the Mayor of Schenectady, New York during the 1832 cholera epidemic which praised the disinfecting properties of chloride of lime (chlorine). The treatise quoted many learned men of the time who demonstrated that chloride of lime eliminated the spread of contagious diseases by attacking the miasmas associated with them. The letter also made reference to the destruction of certain “viruses” that may have been responsible for transmission of the diseases.

Commentary: Averill’s letter is an extraordinary document that is worth reading. He was far ahead of his time. Indeed, he preceded Dr. John Snow’s conclusions about cholera transmission (1849) by 17 years.

March 15, 1813: Birth of Dr. John Snow

Dr. John Snow

March 15, 1813: Birth of John Snow. Dr. John Snow (March 15, 1813–June 16, 1858) is famous for the Broad Street Pump episode but he accomplished so much more than that. He was first and foremost a physician who trained in England in the early part of the 19th century. He made significant contributions to the development of anesthesia and he is considered by many to be the Father of Modern Epidemiology.

The story of Dr. John Snow and how he discovered the cause of a cholera epidemic in the Golden Square neighborhood of London in 1854 has reached almost mythical proportions in public health literature.  Three excellent books describe Snow’s life and the details of the Broad Street Pump incident. (Hempel 2007; Johnson 2006; Vinten-Johansen et al. 2003)

Snow was born on March 15, 1813 in the City of York.  He served his medical-apothecary apprenticeship in Newcastle-on-Tyne with later assistantships in the villages of Burnop Field and Pateley Bridge.  In 1836 at the age of 23, Snow moved to London to complete his medical education.  He qualified as a licensed apothecary in 1838 and a surgeon with a London practice in October 1838.  With an office in the parish of Saint Anne-Soho, Snow would have a medical career of only two-dozen years before he was struck down at the age of 45.

At the age of 17, Snow became a vegetarian and soon thereafter committed to only drinking boiled water or, preferably, distilled water as a result of the writings of John Frank Newton.  He embraced abstinence from alcohol around 1836.  Snow was known to be quiet, frugal and energetic, a man of integrity and a surgeon with an indifferent bedside manner.  He refused to dispense pills and other medicines just because his patients wanted them.  He was able to make a living and acquire some success as a physician when he perfected the administration of chloroform as an anesthetic used during surgeries and infant deliveries.  He even delivered two babies while attending Queen Victoria.

He never married.  His solitary existence and his abstinent personal habits allowed him more time than his colleagues to develop his medical practice and enabled him to pursue his intense interest in determining the cause of cholera epidemics.

Snow gave away all of the knowledge he developed.  He made it available for free to any doctor who wanted it.  No attempt was made by him to patent his many devices for dispensing chloroform and ether. As a result, physicians hired him to use his skill with their patients and he became famous for this.

One overriding personal characteristic of this ascetic doctor of the Victorian era was courage.  He worked hard to develop his ideas and used the scientific method and laboratory investigations to establish his case in whatever area he was working.  Once he became convinced of the rightness of his position, nothing could dislodge him.  It was only his tremendous courage that made it possible for him to go up against the establishment and argue that something other than foul air was causing the deadly cholera. (McGuire 2013)

Snow’s determination of the cause of the cholera epidemic near the Broad Street pump and his ability, albeit temporary, to have the pump handle removed is worthy of recounting here.  The 1854 cholera epidemic struck the Golden Square neighborhood of London with particular viciousness. It began on August 31 and started to wind down about September 7, however, many died over the next few days. Well over 500 people died during this epidemic in a small neighborhood. Snow tracked the numbers of deaths in the neighborhood, and it was clear to him from the pattern of death that the Broad Street pump was the center of the affliction and most likely the source of infection. On September 7, Snow convinced the Board of Governors and Directors of the Poor of St. James Parish that the epidemic was being caused by water from the pump. The next day the commissioners ordered that the pump handle be removed. Structural defects in the Broad Street well sump and the cross-connection to the nearby house sewer were not corrected until 1855.

Incredibly, the residents of Broad Street petitioned the Commissioners to reopen the well that had caused hundreds of deaths in their neighborhood.  This was partly due to the official linkage of the severe, isolated epidemic in the Broad Street area to miasma (foul air). In an amazing footnote to history, the commissioners voted 10 to 2 to reopen the well on September 26, 1855, one year and one week after the last deaths during the epidemic.  According to contemporary reports, there was much rejoicing in the street that the Broad Street well was reopened.  The polluted well was not permanently closed until the cholera epidemic of 1866.

With the emphasis on the Broad Street pump episode in most historical accounts, his pioneering work in epidemiology based on cholera occurrence in a district of London served by two water supplies usually gets lost.  Snow was able to demonstrate that homes in areas of London that were being served contaminated water from the tidal portion of the Thames Estuary were far more likely to have cholera deaths than the homes served water from an unpolluted upland source. He believed that dumping sewage into a water supply perpetuated the death spiral caused by cholera and other waterborne diseases. Snow had strong opinions on sewers and drinking water systems.

“Snow who distilled his own drinking water, agreed that London water should be improved, but he considered the abolition of cesspools and the increasing preference for water closets a sanitary disaster…water closets connected to sewer lines that emptied into rivers also used for metropolitan drinking water were, in his mind, primarily an efficient means of recycling the cholera agent through the intestines of victims as rapidly as possible.  Sanitary reforms were needed, but flushing the waste of a town into the same river by which one quenched ones’ thirst seemed sheer stupidity.” (Vinten-Johansen et al 2003)

Dr. John Snow died of a stroke on June 16, 1858, 42 days after the birth of John L. Leal who grew to be a physician who carried on Snow’s concern about the ability of contaminated water to spread disease.  If the discoveries of Dr. John Snow had been accepted and followed by engineers, sewer planners and drinking water providers beginning in 1854, millions of deaths would have been avoided.  Snow was only one person trying to overcome the juggernaut of the miasma theory.  He was far ahead of his time.

References:

Hempel, Sandra. 2007. The Strange Case of the Broad Street Pump: John Snow and the Mystery of Cholera. Los Angeles, Ca.: University of California.

Johnson, Steven. 2006. The Ghost Map: The Story of London’s Most Terrifying Epidemic and How It Changed Science, Cities and the Modern World, New York City, N.Y.: Riverhead Books.

McGuire, Michael J. (2013). The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Vinten-Johansen, Peter, Howard Brody, Nigel Paneth, Stephen Rachman and Michael Rip. 2003. Cholera, Chloroform, and the Science of Medicine. New York City, N.Y.: Oxford University Press.

Commentary: In 2013, we had a great time celebrating the 200th anniversary of his birth.

March 14, 1896: Official Opening of Sutro Baths, San Francisco

March 14, 1896: On March 14, 1896, the Sutro Baths were opened to the public as the world’s largest indoor swimming pool establishment. The baths were built on the western side of San Francisco by wealthy entrepreneur and former mayor of San Francisco (1894–1896) Adolph Sutro. The structure filled a small beach inlet below the Cliff House, also owned by Adolph Sutro at the time. Both the Cliff House and the former baths site are now a part of the Golden Gate National Recreation Area, operated by the United States National Park Service. The baths struggled for years, mostly due to the very high operating and maintenance costs. Shortly after closing, a fire in 1966 destroyed the building while it was in the process of being demolished. All that remains of the site are concrete walls, blocked off stairs and passageways, and a tunnel with a deep crevice in the middle. The cause of the fire was arson. Shortly afterwards, the developer left San Francisco and claimed insurance money.

The following statistics are from a 1912 article written by J. E. Van Hoosear of Pacific Gas and Electric. Materials used in the vast structure included 100,000 sq ft (9,300 m2) of glass, 600 tons of iron, 3,500,000 board feet (8,300 m3) of lumber, and 10,000 cu yd (7,600 m3) of concrete.

The baths were once serviced by a rail line, the Ferries and Cliff House Railroad, which ran along the cliffs of Lands End overlooking the Golden Gate. The route ran from the baths to a terminal at California Street and Central Avenue (now Presidio Avenue).

During high tides, water would flow directly into the pools from the nearby ocean, recycling the two million US gallons (7,600 m³) of water in about an hour. During low tides, a powerful turbine water pump, built inside a cave at sea level, could be switched on from a control room and could fill the tanks at a rate of 6,000 US gallons a minute (380 L/s), recycling all the water in five hours.

March 13, 1914: Death of John L. Leal

Grave Monument for Dr. Leal

March 13, 1914: Death (in Paterson, NJ) of John L. Leal, physician and water treatment expert who pioneered chlorine disinfection in the U.S. There are many unsung heroes who contributed significantly to public health at the turn of the 20th century. John L. Leal is one of them and after reading this, I think you will agree that he did more than most to save people’s lives.

John L. Leal was born in the small town of Andes, New York on May 5, 1858. His father, John Rose Leal was a physician who joined the 144th Regiment, New York Volunteers and fought in the Civil War. During the siege of Charleston, South Carolina, John Rose Leal contracted what was most likely a case of amoebic dysentery from contaminated drinking water. He suffered from the disease for more than 17 years before he finally died of it in 1882.

John L. Leal attended Princeton College and graduated in 1880. He went on to Columbia College of Physicians and Surgeons finishing his medical education in 1883. He opened a medical practice in Paterson, New Jersey and went to work for the Paterson Board of Health where he remained until 1899. He left City employment and became the sanitary adviser to private water companies including the East Jersey Water Company and the Jersey City Water Supply Company. In 1888, he married Amy L. Arrowsmith and they had one son, Graham, later that year. So far, his life was well spent but not exemplary.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses. The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1909 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on a large-scale basis or over any continuous time period.

But, there was a problem. The public feared chemicals in their food, medicines and water. Adulteration of food and medicines was rampant during this period, which was faithfully catalogued in Upton Sinclair’s The Jungle.

“How could they know that the pale-blue milk that they bought around the corner was watered, and doctored with formaldehyde besides?. . .How could they find out that their tea and coffee, their sugar and flour, had been doctored; that their canned peas had been colored with copper salts, and their fruit jams with aniline dyes?”(1)

At any conference of water professionals in the late 19th and early 20th centuries, strong language was used to oppose chemical disinfection. Even George W. Fuller early in his career was not supportive of chemical disinfectants.

1893, George Warren Fuller: “While chemicals have been of much aid in surgery by bringing about antisepsis and asepsis, it is very improbable that people would allow their drinking water to be drugged with chemicals, even with the view of removing dangerous bacteria–indeed, such a method might prove very dangerous in many cases.”(2)

1894, Thomas M. Drown: “…the idea itself of chemical disinfection is repellent.”(3)

1904, George C. Whipple: “Thus in St. Louis the popular prejudice against the use of alum in clarifying the water is said to be so intense that a local engineer has said ‘it is very doubtful if alum could be used, no matter how excellent the results which might be obtained.’. . .‘We don’t want to drink puckered water.’”(4)

1906, George C. Whipple: “The idea of adding poisonous chemicals [like chlorine] to water for the purpose of improving its quality for drinking purposes has generally been considered as illogical and unsafe. . .”(5)

1906, William P. Mason: “I very much question if the public at large would be willing to disinfect water to-day. We are scarcely driven that far yet.”(6)

1906, P.A. Maignen: “Among the so-called ‘disinfectants’ tried may be cited copper, chlorine and oxalic acid. . .Such poisonous materials should not be permitted to be used on water intended for public supplies.”(7)

Nonetheless, Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward. Where he found the courage to follow the path of chemical disinfection when all of the experts railed against it is not known for certain. His father’s gruesome illness and death and the unnecessary deaths he personally observed as Health Officer for Paterson must have contributed to his decision.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2012, marks the 104th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

In a second trial, the court vindicated Leal’s decision. Afterwards, the use of chlorine spread like wildfire throughout the U.S. Typhoid fever death rates plummeted and children under one year of age stopped dying by the hundreds of thousands.

John L. Leal was not a physically imposing figure. Photographs of him show a man of average height and build with a kind face. Nothing in his appearance hinted at the steel spine and dogged courage that he possessed. One definition of the word hero reads: “a man of distinguished courage or ability, admired for his brave deeds and noble qualities.” These days, many people feel that the word hero has been overused in this country. I think that promoting a water treatment process that saves millions of lives qualifies Leal to be known as a Hero of Public Health.

Why doesn’t everyone know about Leal? Another man, George A. Johnson was wrongly given the credit for the idea of chlorinating the water supply for Jersey City. Johnson was able to get away with his charade, in part, because John L. Leal died on March 13, 1914, and Johnson lived for another 20 years.

Still not convinced? Read The Chlorine Revolution: Water Disinfection and the Fight to Save Lives which was published in April 2013.(8)

References

(1) Sinclair, Upton. The Jungle: With an Afterword by Emory Elliott. New York:Signet Classic, 1990, original copyright 1905, originally published in 1904.

(2) Fuller, George W. “Sand Filtration of Water, with Special Reference to Results Obtained, at Lawrence, Massachusetts.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 64-71. 1895.

(3) Drown, Thomas M. “The Electrical Purification of Water.” Journal NEWWA. 8 (1894): 183-7.

(4) Whipple, George C. Discussion of “Purification of Water for Domestic Use.” Transactions ASCE. 54:Part D (1905): 192-206.

(5) Whipple, George C. “Disinfection as a Means of Water Purification.” Proceedings AWWA. (1906): 266-80.

(6) Mason, William P. “Discussion.” Proceedings AWWA. (1906): 282-3.

(7) Maignen, P.A. “Discussion.” Proceedings AWWA. (1906): 285-6.

(8) McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, Colorado:American Water Works Association. 2013.

Dr. John L. Leal

March 12, 1928: St. Francis Dam Disaster

Portion of the St. Francis Dam after the catastrophic failure

March 12, 1928: St. Francis Dam gives way in Los Angeles, killing over 500 people. “The St. Francis Dam was a curved concrete gravity dam, built to create a large regulating and storage reservoir as part of the Los Angeles Aqueduct. It was located in San Francisquito Canyon, about 40 miles northwest of Los Angeles, California, approximately 10 miles north of the city of Santa Clarita….

The dam was designed and built between 1924 and 1926 by the Los Angeles Department of Water and Power, then named the Bureau of Water Works and Supply. The department was under the supervision of its General Manager and Chief Engineer, William Mulholland.

At two and a half minutes before midnight on March 12, 1928 the dam failed catastrophically and the resulting flood killed up to 600 people. The collapse of the St. Francis Dam is considered to be one of the worst American civil engineering failures of the 20th century and remains the second-greatest loss of life in California’s history, after the 1906 San Francisco Earthquake and fire. The disaster marked the end of Mulholland’s career….

As the dam collapsed, the reservoir’s 12.4 billion U.S. gallons of water began to surge down San Francisquito Canyon in a dam break wave….”

Five minutes after the collapse, having traveled a distance of one and one-half miles at an average speed of 18 miles per hour, the now 120-foot-high flood wave destroyed the heavy concrete Powerhouse No. 2 and took the lives of 64 of the other 67 workmen and their families who lived nearby. The water traveled south down the canyon and began emptying into the Santa Clara riverbed. The amount of water was too great and caused it quickly to begin overflowing its banks, flooding parts of present-day Valencia and Newhall. The deluge, now 55 ft high, was generally following the course of the river bed west. In doing so, hit and demolished Southern California Edison Saugus substation, leaving the entire Santa Clara River Valley and part of the city of Ventura without power.

At this time, near 1:00 AM, at least four miles of the state’s main north-south highway (now Interstate 5) was under water and a short distance away, near what is presently the area around Six Flags Magic Mountain amusement park to State Route 126, the flood was washing away the town of Castaic Junction. At a speed of 12 mph the water continued on and entered the valley. Approximately five miles downstream, near the Ventura and Los Angeles county line, on the flats of the river bank the Edison Company had set up had a temporary construction camp for its 150 man crew. Due to miscommunication and confusion among the Edison personnel, no warning was sent and 84 of them died.”

Guest Commentary: The dam collapse destroyed Mulholland who took the blame for it. However, neither the technology nor geologic understanding at the time existed that would have revealed that one of the dam’s abutments was tied into an ancient landslide. The reservoir saturated that slide and it gave way. The true cause of failure was not known until decades after the collapse. Mulholland went to his grave with the burden of nearly 500 needless deaths for which he felt responsible. (from Byron Buck, 3/12/16)

St. Francis Dam before the failure

Photo: Portion of the St. Francis Dam after the catastrophic failure AND St. Francis Dam before the failure