Tag Archives: Charles-Edward A. Winslow

October 21, 1914: Treasury Drinking Water Standards

Dr. Rupert Blue, 4th Surgeon General of the U.S.

October 21, 1914:  The first numerical drinking water regulationsin the U.S. were adopted. “On October 21, 1914, pursuant to the recommendation of the Surgeon General of the Public Health Service [Dr. Rupert Blue], the Treasury Department adopted the first standards for drinking water supplied to the public by any common carrier engaged in interstate commerce. These standards specified the maximum permissible limits of bacteriological impurity, which may be summarized as follows:

  1. The bacterial plate count on standard agar incubated for 24 [hours] at 37 [degrees] C was not to exceed 100/cc.
  2. Not more than one of the five 10-cc portions of each sample examined was to show presence of B. coli. [equivalent to no more than 2 /100 mL—MPN index for total coliforms]
  3. The recommended procedures were those in Standard Methods of Water Analysis(APHA, 1912) [2nd edition].

These standards were drafted by a commission of 15 appointed members. Among the members of this commission were Charles Gilman Hyde, Milton J. Rosenau, William T. Sedgwick, George C. Whippleand C.-E. A. Winslow, names well known to those who have studied early developments in water treatment.

Though not a part of the standards, the accompanying first progress report is very interesting as it provides insight into the commission’s deliberations on other problems. There appears to have been considerable discussion on whether the standards should also state that the water shall ‘be free from injurious effects upon the human body and free from offensiveness to the sense of sight, taste, or smell’; whether the quality of water required should be obtainable by the common carriers without prohibitive expense; and whether it would be necessary to require more than a ‘few and simple examinations to determine the quality of drinking water.’”

Reference:  AWWA. Water Quality and Treatment. 3rd ed. New York:McGraw Hill, 1971, p. 16-7.

Commentary: Sedgwick, Whipple and Winslow were professors at MIT, Harvard and Yale, respectively. They were also expert witnesses who played prominent roles in the lawsuit between Jersey City and the Jersey City Water Supply Company in 1906-1909. During the second Jersey City trial, they adamantly opposed the use of chlorine by Dr. John L. Leal. The story of the trials and the first continuous use of chlorine to disinfect a U.S. water supply are detailed in The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives, which was published in the spring of 2013.

Advertisements

January 8, 1817: Tsunami on the Delaware Estuary; 1957: Death of C.E.A. Winslow

A model predicted the tsunami wave height from a Jan. 8, 1817, earthquake offshore South Carolina. The earthquake’s magnitude was estimated at 7.4 from newspaper accounts.

January 8, 1817:  Tsunami on the Delaware Estuary.  New geological modeling has suggested that a magnitude 7.4 earthquake occurred off of South Carolina in 1817. The resulting tsunami tossed boats around on the Delaware Estuary south of Philadelphia according to newspaper reports at the time.

“The size and location, or epicenter, of the 1817 earthquake has never been pinned down so closely before. U.S. Geological Survey research geophysicist Susan Hough and her colleagues zeroed in on the source from newly uncovered archival records, looking at where the shaking was strongest. But they weren’t sure about the tsunami link: The 11 a.m. arrival time seemed too late for a 4:30 a.m. earthquake. So they created a computer model of the tsunami, testing different locations and magnitudes. The best fit to force a foot-high (30 centimeters) wave up the mouth of Delaware Bay by about 11 a.m. was a magnitude-7.4 earthquake offshore of South Carolina.

‘That was the eureka moment,’ Hough told Live Science’s Our Amazing Planet. ‘Darned if that wave doesn’t hit the Delaware River and slow way down.’

The foot-high tsunami wave started about 800 miles (1,300 kilometers) south of Delaware Bay and 400 to 500 miles (650 to 800 km) offshore of South Carolina, according to the study, published in the September/October issue of the journal Seismological Research Letters….

No obvious culprit jumps out of the seafloor topography, such as a linear feature that could be an earthquake-causing fault, Hough said. But according to ship records, the sea above the temblor’s likely epicenter trembled for several years. Earthquakes can be felt at sea, and ship captains reported shaking before and after Jan. 8, 1817, that could have been foreshocks and aftershocks, the researchers said. Ships in the area also rocked or shook from earthquakes in 1858, 1877 and 1879.”

January 8, 1957:  Death of Charles-Edward A. Winslow. “Charles-Edward Amory Winslow (4 February 1877 – 8 January 1957) was an American bacteriologist and public health expert who was, according to the Encyclopedia of Public Health, “a seminal figure in public health, not only in his own country, the United States, but in the wider Western world.”

Winslow was born in Boston, Massachusetts and attended Massachusetts Institute of Technology (M.I.T.), obtaining a B.S. in 1898 and an M.S. in 1910.

He began his career as a bacteriologist. He met Anne Fuller Rogers when they were students in William T. Sedgwick’s laboratory at M.I.T., and married her in 1907. He taught at the Massachusetts Institute of Technology while heading the sewage experiment station from 1908 to 1910, then taught at the College of the City of New York from 1910 to 1914.

He was the youngest charter member of the Society of American Bacteriologists when that organization was founded in 1899. With Samuel Cate Prescott he published the first American textbook on the elements of water bacteriology.

In 1915 he founded the Yale Department of Public Health within the Yale Medical School, and he was professor and chairman of the Department until he retired in 1945. (The Department became the Yale School of Public Health after accreditation was introduced in 1947.) During a time dominated by discoveries in bacteriology, he emphasized a broader perspective on causation, adopting a more holistic perspective. The department under his direction was a catalyst for health reform in Connecticut. He was the first director of Yale’s J.B. Pierce Laboratory, serving from 1932 to 1957. Winslow was also instrumental in founding the Yale School of Nursing.

He was the first Editor-in-Chief of the Journal of Bacteriology, serving in that position from 1916 to 1944. He was also editor of the American Journal of Public Health from 1944 to 1954. He was curator of public health at the American Museum of Natural History from 1910 to 1922. In 1926 he became president of the American Public Health Association, and in the 1950s was a consultant to the World Health Organization.”

October 21, 1914: Treasury Drinking Water Standards

Dr. Rupert Blue, 4th Surgeon General of the U.S.

October 21, 1914:  The first numerical drinking water regulations in the U.S. were adopted. “On October 21, 1914, pursuant to the recommendation of the Surgeon General of the Public Health Service [Dr. Rupert Blue], the Treasury Department adopted the first standards for drinking water supplied to the public by any common carrier engaged in interstate commerce. These standards specified the maximum permissible limits of bacteriological impurity, which may be summarized as follows:

  1. The bacterial plate count on standard agar incubated for 24 [hours] at 37 [degrees] C was not to exceed 100/cc.
  2. Not more than one of the five 10-cc portions of each sample examined was to show presence of B. coli. [equivalent to no more than 2 /100 mL—MPN index for total coliforms]
  3. The recommended procedures were those in Standard Methods of Water Analysis (APHA, 1912) [2nd edition].

These standards were drafted by a commission of 15 appointed members. Among the members of this commission were Charles Gilman Hyde, Milton J. Rosenau, William T. Sedgwick, George C. Whipple and C.-E. A. Winslow, names well known to those who have studied early developments in water treatment.

Though not a part of the standards, the accompanying first progress report is very interesting as it provides insight into the commission’s deliberations on other problems. There appears to have been considerable discussion on whether the standards should also state that the water shall ‘be free from injurious effects upon the human body and free from offensiveness to the sense of sight, taste, or smell’; whether the quality of water required should be obtainable by the common carriers without prohibitive expense; and whether it would be necessary to require more than a ‘few and simple examinations to determine the quality of drinking water.’”

Reference:  AWWA. Water Quality and Treatment. 3rd ed. New York:McGraw Hill, 1971, p. 16-7.

Commentary: Sedgwick, Whipple and Winslow were professors at MIT, Harvard and Yale, respectively. They were also expert witnesses who played prominent roles in the lawsuit between Jersey City and the Jersey City Water Supply Company in 1906-1909. During the second Jersey City trial, they adamantly opposed the use of chlorine by Dr. John L. Leal. The story of the trials and the first continuous use of chlorine to disinfect a U.S. water supply are detailed in The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives, which was published in the spring of 2013.

#TDIWH—February 4, 1909: Second Use of Chlorine in the U.S.; 1877: Birth of C.E.A. Winslow

Little Falls Water Treatment Plant

Little Falls Water Treatment Plant

February 4, 1909: Dr. John L. Leal testified at the second Jersey City trial about the first use of chlorine for continuous disinfection of a U.S. water supply at Boonton Reservoir, which was the water supply for Jersey City, New Jersey. The transcript from February 5, 1909, revealed that Leal had also installed a chloride of lime feed system at the filtration plant at Little Falls, New Jersey. He stated that he had experimented with chloride of lime addition some months before and that he was now using it daily. Thus, the trial transcript provides the first written evidence of the second continuous use of chlorine to disinfect a drinking water supply. This was also the first time chlorine was used in conjunction with mechanical filtration.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

0108 CEA WinslowFebruary 4, 1877: Charles-Edward A. Winslow is born. “Charles-Edward Amory Winslow (4 February 1877 – 8 January 1957) was an American bacteriologist and public health expert who was, according to the Encyclopedia of Public Health, “a seminal figure in public health, not only in his own country, the United States, but in the wider Western world.”

Winslow was born in Boston, Massachusetts and attended Massachusetts Institute of Technology (M.I.T.), obtaining a B.S. in 1898 and an M.S. in 1910.

He began his career as a bacteriologist. He met Anne Fuller Rogers when they were students in William T. Sedgwick’s laboratory at M.I.T., and married her in 1907. He taught at the Massachusetts Institute of Technology while heading the sewage experiment station from 1908 to 1910, then taught at the College of the City of New York from 1910 to 1914.

He was the youngest charter member of the Society of American Bacteriologists when that organization was founded in 1899. With Samuel Cate Prescott he published the first American textbook on the elements of water bacteriology.

In 1915 he founded the Yale Department of Public Health within the Yale Medical School, and he was professor and chairman of the Department until he retired in 1945. (The Department became the Yale School of Public Health after accreditation was introduced in 1947.) During a time dominated by discoveries in bacteriology, he emphasized a broader perspective on causation, adopting a more holistic perspective. The department under his direction was a catalyst for health reform in Connecticut. He was the first director of Yale’s J.B. Pierce Laboratory, serving from 1932 to 1957. Winslow was also instrumental in founding the Yale School of Nursing.

He was the first Editor-in-Chief of the Journal of Bacteriology, serving in that position from 1916 to 1944. He was also editor of the American Journal of Public Health from 1944 to 1954. He was curator of public health at the American Museum of Natural History from 1910 to 1922. In 1926 he became president of the American Public Health Association, and in the 1950s was a consultant to the World Health Organization.”

January 8, 1817: Tsunami on the Delaware Estuary; 1957: Death of C.E.A. Winslow

A model predicted the tsunami wave height from a Jan. 8, 1817, earthquake offshore South Carolina. The earthquake's magnitude was estimated at 7.4 from newspaper accounts.

A model predicted the tsunami wave height from a Jan. 8, 1817, earthquake offshore South Carolina. The earthquake’s magnitude was estimated at 7.4 from newspaper accounts.

January 8, 1817: Tsunami on the Delaware Estuary. New geological modeling has suggested that a magnitude 7.4 earthquake occurred off of South Carolina in 1817. The resulting tsunami tossed boats around on the Delaware Estuary south of Philadelphia according to newspaper reports at the time.

“The size and location, or epicenter, of the 1817 earthquake has never been pinned down so closely before. U.S. Geological Survey research geophysicist Susan Hough and her colleagues zeroed in on the source from newly uncovered archival records, looking at where the shaking was strongest. But they weren’t sure about the tsunami link: The 11 a.m. arrival time seemed too late for a 4:30 a.m. earthquake. So they created a computer model of the tsunami, testing different locations and magnitudes. The best fit to force a

foot-high (30 centimeters) wave up the mouth of Delaware Bay by about 11 a.m. was a magnitude-7.4 earthquake offshore of South Carolina.

‘That was the eureka moment,’ Hough told Live Science’s Our Amazing Planet. ‘Darned if that wave doesn’t hit the Delaware River and slow way down.’

The foot-high tsunami wave started about 800 miles (1,300 kilometers) south of Delaware Bay and 400 to 500 miles (650 to 800 km) offshore of South Carolina, according to the study, published in the September/October issue of the journal Seismological Research Letters….

No obvious culprit jumps out of the seafloor topography, such as a linear feature that could be an earthquake-causing fault, Hough said. But according to ship records, the sea above the temblor’s likely epicenter trembled for several years. Earthquakes can be felt at sea, and ship captains reported shaking before and after Jan. 8, 1817, that could have been foreshocks and aftershocks, the researchers said. Ships in the area also rocked or shook from earthquakes in 1858, 1877 and 1879.”

0108 CEA WinslowJanuary 8, 1957: Death of Charles-Edward A. Winslow. “Charles-Edward Amory Winslow (4 February 1877 – 8 January 1957) was an American bacteriologist and public health expert who was, according to the Encyclopedia of Public Health, “a seminal figure in public health, not only in his own country, the United States, but in the wider Western world.”

Winslow was born in Boston, Massachusetts and attended Massachusetts Institute of Technology (M.I.T.), obtaining a B.S. in 1898 and an M.S. in 1910.

He began his career as a bacteriologist. He met Anne Fuller Rogers when they were students in William T. Sedgwick’s laboratory at M.I.T., and married her in 1907. He taught at the Massachusetts Institute of Technology while heading the sewage experiment station from 1908 to 1910, then taught at the College of the City of New York from 1910 to 1914.

He was the youngest charter member of the Society of American Bacteriologists when that organization was founded in 1899. With Samuel Cate Prescott he published the first American textbook on the elements of water bacteriology.

In 1915 he founded the Yale Department of Public Health within the Yale Medical School, and he was professor and chairman of the Department until he retired in 1945. (The Department became the Yale School of Public Health after accreditation was introduced in 1947.) During a time dominated by discoveries in bacteriology, he emphasized a broader perspective on causation, adopting a more holistic perspective. The department under his direction was a catalyst for health reform in Connecticut. He was the first director of Yale’s J.B. Pierce Laboratory, serving from 1932 to 1957. Winslow was also instrumental in founding the Yale School of Nursing.

He was the first Editor-in-Chief of the Journal of Bacteriology, serving in that position from 1916 to 1944. He was also editor of the American Journal of Public Health from 1944 to 1954. He was curator of public health at the American Museum of Natural History from 1910 to 1922. In 1926 he became president of the American Public Health Association, and in the 1950s was a consultant to the World Health Organization.”

October 21, 1914: Treasury Drinking Water Standards

Dr. Rupert Blue, 4th Surgeon General of the U.S.

Dr. Rupert Blue, 4th Surgeon General of the U.S.

October 21, 1914:  The first numerical drinking water regulations in the U.S. were adopted. “On October 21, 1914, pursuant to the recommendation of the Surgeon General of the Public Health Service [Dr. Rupert Blue], the Treasury Department adopted the first standards for drinking water supplied to the public by any common carrier engaged in interstate commerce. These standards specified the maximum permissible limits of bacteriological impurity, which may be summarized as follows:

  1. The bacterial plate count on standard agar incubated for 24 [hours] at 37 [degrees] C was not to exceed 100/cc.
  2. Not more than one of the five 10-cc portions of each sample examined was to show presence of B. coli. [equivalent to no more than 2 /100 mL—MPN index for total coliforms]
  3. The recommended procedures were those in Standard Methods of Water Analysis (APHA, 1912) [2nd edition].

These standards were drafted by a commission of 15 appointed members. Among the members of this commission were Charles Gilman Hyde, Milton J. Rosenau, William T. Sedgwick, George C. Whipple and C.-E. A. Winslow, names well known to those who have studied early developments in water treatment.

Though not a part of the standards, the accompanying first progress report is very interesting as it provides insight into the commission’s deliberations on other problems. There appears to have been considerable discussion on whether the standards should also state that the water shall ‘be free from injurious effects upon the human body and free from offensiveness to the sense of sight, taste, or smell’; whether the quality of water required should be obtainable by the common carriers without prohibitive expense; and whether it would be necessary to require more than a ‘few and simple examinations to determine the quality of drinking water.’”

Reference:  AWWA. Water Quality and Treatment. 3rd ed. New York:McGraw Hill, 1971, p. 16-7.

Commentary: Sedgwick, Whipple and Winslow were professors at MIT, Harvard and Yale, respectively. They were also expert witnesses who played prominent roles in the lawsuit between Jersey City and the Jersey City Water Supply Company in 1906-1909. During the second Jersey City trial, they adamantly opposed the use of chlorine by Dr. John L. Leal. The story of the trials and the first continuous use of chlorine to disinfect a U.S. water supply are detailed in The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives, which was published in the spring of 2013.

January 8, 1817: Tsunami on the Delaware Estuary; 1957: Death of C.E.A. Winslow

A model predicted the tsunami wave height from a Jan. 8, 1817, earthquake offshore South Carolina. The earthquake's magnitude was estimated at 7.4 from newspaper accounts.

A model predicted the tsunami wave height from a Jan. 8, 1817, earthquake offshore South Carolina. The earthquake’s magnitude was estimated at 7.4 from newspaper accounts.

January 8, 1817: Tsunami on the Delaware Estuary. New geological modeling has suggested that a magnitude 7.4 earthquake occurred off of South Carolina in 1817. The resulting tsunami tossed boats around on the Delaware Estuary south of Philadelphia according to newspaper reports at the time.

“The size and location, or epicenter, of the 1817 earthquake has never been pinned down so closely before. U.S. Geological Survey research geophysicist Susan Hough and her colleagues zeroed in on the source from newly uncovered archival records, looking at where the shaking was strongest. But they weren’t sure about the tsunami link: The 11 a.m. arrival time seemed too late for a 4:30 a.m. earthquake. So they created a computer model of the tsunami, testing different locations and magnitudes. The best fit to force a

foot-high (30 centimeters) wave up the mouth of Delaware Bay by about 11 a.m. was a magnitude-7.4 earthquake offshore of South Carolina.

‘That was the eureka moment,’ Hough told Live Science’s Our Amazing Planet. ‘Darned if that wave doesn’t hit the Delaware River and slow way down.’

The foot-high tsunami wave started about 800 miles (1,300 kilometers) south of Delaware Bay and 400 to 500 miles (650 to 800 km) offshore of South Carolina, according to the study, published in the September/October issue of the journal Seismological Research Letters….

No obvious culprit jumps out of the seafloor topography, such as a linear feature that could be an earthquake-causing fault, Hough said. But according to ship records, the sea above the temblor’s likely epicenter trembled for several years. Earthquakes can be felt at sea, and ship captains reported shaking before and after Jan. 8, 1817, that could have been foreshocks and aftershocks, the researchers said. Ships in the area also rocked or shook from earthquakes in 1858, 1877 and 1879.”

0108 CEA WinslowJanuary 8, 1957: Death of Charles-Edward A. Winslow. “Charles-Edward Amory Winslow (4 February 1877 – 8 January 1957) was an American bacteriologist and public health expert who was, according to the Encyclopedia of Public Health, “a seminal figure in public health, not only in his own country, the United States, but in the wider Western world.”

Winslow was born in Boston, Massachusetts and attended Massachusetts Institute of Technology (M.I.T.), obtaining a B.S. in 1898 and an M.S. in 1910.

He began his career as a bacteriologist. He met Anne Fuller Rogers when they were students in William T. Sedgwick’s laboratory at M.I.T., and married her in 1907. He taught at the Massachusetts Institute of Technology while heading the sewage experiment station from 1908 to 1910, then taught at the College of the City of New York from 1910 to 1914.

He was the youngest charter member of the Society of American Bacteriologists when that organization was founded in 1899. With Samuel Cate Prescott he published the first American textbook on the elements of water bacteriology.

In 1915 he founded the Yale Department of Public Health within the Yale Medical School, and he was professor and chairman of the Department until he retired in 1945. (The Department became the Yale School of Public Health after accreditation was introduced in 1947.) During a time dominated by discoveries in bacteriology, he emphasized a broader perspective on causation, adopting a more holistic perspective. The department under his direction was a catalyst for health reform in Connecticut. He was the first director of Yale’s J.B. Pierce Laboratory, serving from 1932 to 1957. Winslow was also instrumental in founding the Yale School of Nursing.

He was the first Editor-in-Chief of the Journal of Bacteriology, serving in that position from 1916 to 1944. He was also editor of the American Journal of Public Health from 1944 to 1954. He was curator of public health at the American Museum of Natural History from 1910 to 1922. In 1926 he became president of the American Public Health Association, and in the 1950s was a consultant to the World Health Organization.”