Tag Archives: chemophobia

January 11, 1922: Chlorination of New England water supplies and Demands for Lower Color Content of Drinking Water

January 11, 1922:  Two fascinating articles in Engineering and Contracting about the progress of water treatment, regulations and disinfection in U.S. water supplies in 1922.

“The Chlorination of New England Water Supplies.” By William J. Orchard. “One thousand nine hundred and ninety-six: communities In the United States chlorinate water or sewage or both with liquid chlorine. Only 128 or 6 per cent of these are in New England. Twelve are treating sewage, leaving but 116 New England communities chlorinating drinking water. Nearly half, 43 per cent, of these are in Connecticut where 51 communities use liquid chlorine to safeguard their water supplies, 24 are in Maine, 16 are in New Hampshire, 11 in Rhode Island, Massachusetts has nine while Vermont has three communities using liquid chlorine for their water supplies.

Scoring the states in this country in accordance with the number of communities using liquid chlorine and starting with New York in first place with 254, ending with Nevada in 48th place with but one lone chlorinating community we find Connecticut stands 11th, Maine 25th, New Hampshire 30th, Rhode Island 36th, Massachusetts 41st, and Vermont 47th.

A manufacturer of chlorinating equipment naturally asks why this relatively small number of communities using liquid chlorine in certain sections of New England? Now, in trying to answer that question, the speaker appreciates that he is skating on thin ice-dangerously near a deep hole labeled ‘The Johnsonian Controversy,’ and caution dictates that he skate the other way.

But it is a fact that there is more resistance to the chlorination of drinking water in New England than in any other section of the country. Some of this is due to a firm, honest conviction in the purity and safety of unsterilized water supplies-some of this is due to complete deep rooted faith in the absolute efficacy of storage and water shed patrol—but, in the writer’s opinion, the principle cause for this resistance to chlorination in New England Is the marked aversion found In some quarters to the application of chemicals in any form to drinking water. It matters not if, as in the case of sterilization, a barrel full of chlorine will suffice for a Woolworth building filled with water. The objection is to the application of chemicals in any form-no matter what the chemicals may be. This attitude was clearly expressed by one of New England’s most prominent engineers who said to the speaker, ‘Up here we don’t want medicated waters.’”

Commentary:  I am not sure what “The Johnsonian Controversy” was but Orchard correctly points out the resistance to chlorination in New England. Antagonism against the use of chemicals in drinking water treatment was, in large part, due to the influence of the Lawrence Experiment Station on the actions of water plants.

Engineering and Contracting article. “Some Features of Present Water Supply Practice.” Nicholas S. Hill, Chairman. “Water Quality Standards—Standards of quality are steadily rising and bid fair to continue doing so. Communities no longer consider safety sufficient, but demand a drinking water of good appearance. This demand has good scientific foundation for the best appearing waters are frequently the safer.

In certain sections, the northeast particularly, waters having colors of 25 or more are still used without complaint.  These colors would not be tolerated in western cities supplied with lake or filtered river water, or even in New England. Public opinion is fast getting in a position to demand water of an average color of 10 parts per million or less with a maximum of 15. Particular objection is made to colored surface waters containing odoriferous organisms and turbidity, whether due to heavy microscopic growths, to clay, or to iron rust, is also objectionable.

While the bacteriological standard of the U. S. Public Health Service [1914] met with considerable criticism because of its alleged severity and because it excluded certain water supplying communities in which good public health conditions prevailed. It can not be denied that those who are aiming to supply waters of high quality are trying to equal or better this standard which, as is well known, commands that all waters used in inter-state commerce shall contain no gas-forming organisms (presumably B. coli) in at least three out of five portions of 10 c.c. from the sample tested. One reason for this appreciation is the improvement in public health diagnosis; this, in turn, to better vital statistics, better organization of the health authorities and refinements in clinical methods.”

Commentary:  Only 14 years after chlorination began to eradicate waterborne disease, an enlightened public began to demand higher quality water—as they should.

Reference:  Engineering and Contracting. 1922. 57:2(January 11, 1922): 22-3.

Advertisements

May 5, 1858: Birth of John L. Leal

May 5, 1858: 159th anniversary of the birth of John L. Leal, physician and water treatment expert who pioneered chlorine disinfection in the U.S. There are many unsung heroes who contributed significantly to public health at the turn of the 20th century. John L. Leal is one of them and after reading this, I think you will agree that he did more than most to save people’s lives.

John L. Leal was born in the small town of Andes, New York on May 5, 1858. His father, John Rose Leal was a physician who joined the 144th Regiment, New York Volunteers and fought in the Civil War. During the siege of Charleston, South Carolina, John Rose Leal contracted what was most likely a case of amoebic dysentery from contaminated drinking water. He suffered from the disease for more than 17 years before he finally died of it in 1882.

John L. Leal attended Princeton College and graduated in 1880. He went on to Columbia College of Physicians and Surgeons finishing his medical education in 1883. He opened a medical practice in Paterson, New Jersey and went to work for the Paterson Board of Health where he remained until 1899. He left City employment and became the sanitary adviser to private water companies including the East Jersey Water Company and the Jersey City Water Supply Company. In 1888, he married Amy L. Arrowsmith and they had one son, Graham, later that year. So far, his life was well spent but not exemplary.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses. The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1909 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on a large-scale basis or over any continuous time period.

But, there was a problem. The public feared chemicals in their food, medicines and water. Adulteration of food and medicines was rampant during this period, which was faithfully catalogued in Upton Sinclair’s The Jungle.

“How could they know that the pale-blue milk that they bought around the corner was watered, and doctored with formaldehyde besides?. . .How could they find out that their tea and coffee, their sugar and flour, had been doctored; that their canned peas had been colored with copper salts, and their fruit jams with aniline dyes?”(1)

At any conference of water professionals in the late 19th and early 20th centuries, strong language was used to oppose chemical disinfection. Even George W. Fuller early in his career was not supportive of chemical disinfectants.

1893, George Warren Fuller: “While chemicals have been of much aid in surgery by bringing about antisepsis and asepsis, it is very improbable that people would allow their drinking water to be drugged with chemicals, even with the view of removing dangerous bacteria–indeed, such a method might prove very dangerous in many cases.”(2)

1894, Thomas M. Drown: “…the idea itself of chemical disinfection is repellent.”(3)

1904, George C. Whipple: “Thus in St. Louis the popular prejudice against the use of alum in clarifying the water is said to be so intense that a local engineer has said ‘it is very doubtful if alum could be used, no matter how excellent the results which might be obtained.’. . .‘We don’t want to drink puckered water.’”(4)

1906, George C. Whipple: “The idea of adding poisonous chemicals [like chlorine] to water for the purpose of improving its quality for drinking purposes has generally been considered as illogical and unsafe. . .”(5)

1906, William P. Mason: “I very much question if the public at large would be willing to disinfect water to-day. We are scarcely driven that far yet.”(6)

1906, P.A. Maignen: “Among the so-called ‘disinfectants’ tried may be cited copper, chlorine and oxalic acid. . .Such poisonous materials should not be permitted to be used on water intended for public supplies.”(7)

Nonetheless, Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward. Where he found the courage to follow the path of chemical disinfection when all of the experts railed against it is not known for certain. His father’s gruesome illness and death and the unnecessary deaths he personally observed as Health Officer for Paterson must have contributed to his decision.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2012, marks the 104th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

In a second trial, the court vindicated Leal’s decision. Afterwards, the use of chlorine spread like wildfire throughout the U.S. Typhoid fever death rates plummeted and children under one year of age stopped dying by the hundreds of thousands.

John L. Leal was not a physically imposing figure. Photographs of him show a man of average height and build with a kind face. Nothing in his appearance hinted at the steel spine and dogged courage that he possessed. One definition of the word hero reads: “a man of distinguished courage or ability, admired for his brave deeds and noble qualities.” These days, many people feel that the word hero has been overused in this country. I think that promoting a water treatment process that saves millions of lives qualifies Leal to be known as a Hero of Public Health.

Why doesn’t everyone know about Leal? Another man, George A. Johnson was wrongly given the credit for the idea of chlorinating the water supply for Jersey City. Johnson was able to get away with his charade, in part, because John L. Leal died on March 13, 1914, and Johnson lived for another 20 years.

Still not convinced? Well, you will have to wait for the full story that has been published in my book, The Chlorine Revolution: Water Disinfection and the Fight to Save Lives which will be available for shipment on March 20, 2013.(8)

References

(1) Sinclair, Upton. The Jungle: With an Afterword by Emory Elliott. New York:Signet Classic, 1990, original copyright 1905, originally published in 1904.

(2) Fuller, George W. “Sand Filtration of Water, with Special Reference to Results Obtained, at Lawrence, Massachusetts.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 64-71. 1895.

(3) Drown, Thomas M. “The Electrical Purification of Water.” Journal NEWWA. 8 (1894): 183-7.

(4) Whipple, George C. Discussion of “Purification of Water for Domestic Use.” Transactions ASCE. 54:Part D (1905): 192-206.

(5) Whipple, George C. “Disinfection as a Means of Water Purification.” Proceedings AWWA. (1906): 266-80.

(6) Mason, William P. “Discussion.” Proceedings AWWA. (1906): 282-3.

(7) Maignen, P.A. “Discussion.” Proceedings AWWA. (1906): 285-6.

(8) McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, Colorado:American Water Works Association. 2013.

Commentary: On May 5, 2013, at Cedar Lawn Cemetery in Paterson, New Jersey, a grave monument was dedicated to Dr. Leal. For 98 years, his grave was unmarked. The granite obelisk has the names of John L. Leal and five members of his immediate family carved on the sides. Under John L. Leal’s name is the descriptor: Hero of Public Health.

Grave Monument for Dr. Leal

March 13, 1914: Death of John L. Leal

Grave Monument for Dr. Leal

March 13, 1914: Death (in Paterson, NJ) of John L. Leal, physician and water treatment expert who pioneered chlorine disinfection in the U.S. There are many unsung heroes who contributed significantly to public health at the turn of the 20th century. John L. Leal is one of them and after reading this, I think you will agree that he did more than most to save people’s lives.

John L. Leal was born in the small town of Andes, New York on May 5, 1858. His father, John Rose Leal was a physician who joined the 144th Regiment, New York Volunteers and fought in the Civil War. During the siege of Charleston, South Carolina, John Rose Leal contracted what was most likely a case of amoebic dysentery from contaminated drinking water. He suffered from the disease for more than 17 years before he finally died of it in 1882.

John L. Leal attended Princeton College and graduated in 1880. He went on to Columbia College of Physicians and Surgeons finishing his medical education in 1883. He opened a medical practice in Paterson, New Jersey and went to work for the Paterson Board of Health where he remained until 1899. He left City employment and became the sanitary adviser to private water companies including the East Jersey Water Company and the Jersey City Water Supply Company. In 1888, he married Amy L. Arrowsmith and they had one son, Graham, later that year. So far, his life was well spent but not exemplary.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses. The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1909 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on a large-scale basis or over any continuous time period.

But, there was a problem. The public feared chemicals in their food, medicines and water. Adulteration of food and medicines was rampant during this period, which was faithfully catalogued in Upton Sinclair’s The Jungle.

“How could they know that the pale-blue milk that they bought around the corner was watered, and doctored with formaldehyde besides?. . .How could they find out that their tea and coffee, their sugar and flour, had been doctored; that their canned peas had been colored with copper salts, and their fruit jams with aniline dyes?”(1)

At any conference of water professionals in the late 19th and early 20th centuries, strong language was used to oppose chemical disinfection. Even George W. Fuller early in his career was not supportive of chemical disinfectants.

1893, George Warren Fuller: “While chemicals have been of much aid in surgery by bringing about antisepsis and asepsis, it is very improbable that people would allow their drinking water to be drugged with chemicals, even with the view of removing dangerous bacteria–indeed, such a method might prove very dangerous in many cases.”(2)

1894, Thomas M. Drown: “…the idea itself of chemical disinfection is repellent.”(3)

1904, George C. Whipple: “Thus in St. Louis the popular prejudice against the use of alum in clarifying the water is said to be so intense that a local engineer has said ‘it is very doubtful if alum could be used, no matter how excellent the results which might be obtained.’. . .‘We don’t want to drink puckered water.’”(4)

1906, George C. Whipple: “The idea of adding poisonous chemicals [like chlorine] to water for the purpose of improving its quality for drinking purposes has generally been considered as illogical and unsafe. . .”(5)

1906, William P. Mason: “I very much question if the public at large would be willing to disinfect water to-day. We are scarcely driven that far yet.”(6)

1906, P.A. Maignen: “Among the so-called ‘disinfectants’ tried may be cited copper, chlorine and oxalic acid. . .Such poisonous materials should not be permitted to be used on water intended for public supplies.”(7)

Nonetheless, Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward. Where he found the courage to follow the path of chemical disinfection when all of the experts railed against it is not known for certain. His father’s gruesome illness and death and the unnecessary deaths he personally observed as Health Officer for Paterson must have contributed to his decision.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2012, marks the 104th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

In a second trial, the court vindicated Leal’s decision. Afterwards, the use of chlorine spread like wildfire throughout the U.S. Typhoid fever death rates plummeted and children under one year of age stopped dying by the hundreds of thousands.

John L. Leal was not a physically imposing figure. Photographs of him show a man of average height and build with a kind face. Nothing in his appearance hinted at the steel spine and dogged courage that he possessed. One definition of the word hero reads: “a man of distinguished courage or ability, admired for his brave deeds and noble qualities.” These days, many people feel that the word hero has been overused in this country. I think that promoting a water treatment process that saves millions of lives qualifies Leal to be known as a Hero of Public Health.

Why doesn’t everyone know about Leal? Another man, George A. Johnson was wrongly given the credit for the idea of chlorinating the water supply for Jersey City. Johnson was able to get away with his charade, in part, because John L. Leal died on March 13, 1914, and Johnson lived for another 20 years.

Still not convinced? Read The Chlorine Revolution: Water Disinfection and the Fight to Save Lives which was published in April 2013.(8)

References

(1) Sinclair, Upton. The Jungle: With an Afterword by Emory Elliott. New York:Signet Classic, 1990, original copyright 1905, originally published in 1904.

(2) Fuller, George W. “Sand Filtration of Water, with Special Reference to Results Obtained, at Lawrence, Massachusetts.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 64-71. 1895.

(3) Drown, Thomas M. “The Electrical Purification of Water.” Journal NEWWA. 8 (1894): 183-7.

(4) Whipple, George C. Discussion of “Purification of Water for Domestic Use.” Transactions ASCE. 54:Part D (1905): 192-206.

(5) Whipple, George C. “Disinfection as a Means of Water Purification.” Proceedings AWWA. (1906): 266-80.

(6) Mason, William P. “Discussion.” Proceedings AWWA. (1906): 282-3.

(7) Maignen, P.A. “Discussion.” Proceedings AWWA. (1906): 285-6.

(8) McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, Colorado:American Water Works Association. 2013.

Dr. John L. Leal

January 11, 1922: Chlorination of New England water supplies and Demands for Lower Color Content of Drinking Water

0111 NEWWA no cl2January 11, 1922: Two fascinating articles in Engineering and Contracting about the progress of water treatment, regulations and disinfection in U.S. water supplies in 1922.

“The Chlorination of New England Water Supplies.” By William J. Orchard. “One thousand nine hundred and ninety-six: communities In the United States chlorinate water or sewage or both with liquid chlorine. Only 128 or 6 per cent of these are in New England. Twelve are treating sewage, leaving but 116 New England communities chlorinating drinking water. Nearly half, 43 per cent, of these are in Connecticut where 51 communities use liquid chlorine to safeguard their water supplies, 24 are in Maine, 16 are in New Hampshire, 11 in Rhode Island, Massachusetts has nine while Vermont has three communities using liquid chlorine for their water supplies.

Scoring the states in this country in accordance with the number of communities using liquid chlorine and starting with New York in first place with 254, ending with Nevada in 48th place with but one lone chlorinating community we find Connecticut stands 11th, Maine 25th, New Hampshire 30th, Rhode Island 36th, Massachusetts 41st, and Vermont 47th.

A manufacturer of chlorinating equipment naturally asks why this relatively small number of communities using liquid chlorine in certain sections of New England? Now, in trying to answer that question, the speaker appreciates that he is skating on thin ice-dangerously near a deep hole labeled ‘The Johnsonian Controversy,’ and caution dictates that he skate the other way.

But it is a fact that there is more resistance to the chlorination of drinking water in New England than in any other section of the country. Some of this is due to a firm, honest conviction in the purity and safety of unsterilized water supplies-some of this is due to complete deep rooted faith in the absolute efficacy of storage and water shed patrol—but, in the writer’s opinion, the principle cause for this resistance to chlorination in New England Is the marked aversion found In some quarters to the application of chemicals in any form to drinking water. It matters not if, as in the case of sterilization, a barrel full of chlorine will suffice for a Woolworth building filled with water. The objection is to the application of chemicals in any form-no matter what the chemicals may be. This attitude was clearly expressed by one of New England’s most prominent engineers who said to the speaker, ‘Up here we don’t want medicated waters.’”

Commentary: I am not sure what “The Johnsonian Controversy” was but Orchard correctly points out the resistance to chlorination in New England. Antagonism against the use of chemicals in drinking water treatment was, in large part, due to the influence of the Lawrence Experiment Station on the actions of water plants.

Engineering and Contracting article. “Some Features of Present Water Supply Practice.” Nicholas S. Hill, Chairman. “Water Quality Standards—Standards of quality are steadily rising and bid fair to continue doing so. Communities no longer consider safety sufficient, but demand a drinking water of good appearance. This demand has good scientific foundation for the best appearing waters are frequently the safer.

In certain sections, the northeast particularly, waters having colors of 25 or more are still used without complaint. These colors would not be tolerated in western cities supplied with lake or filtered river water, or even in New England. Public opinion is fast getting in a position to demand water of an average color of 10 parts per million or less with a maximum of 15. Particular objection is made to colored surface waters containing odoriferous organisms and turbidity, whether due to heavy microscopic growths, to clay, or to iron rust, is also objectionable.

While the bacteriological standard of the U. S. Public Health Service [1914] met with considerable criticism because of its alleged severity and because it excluded certain water supplying communities in which good public health conditions prevailed. It can not be denied that those who are aiming to supply waters of high quality are trying to equal or better this standard which, as is well known, commands that all waters used in inter-state commerce shall contain no gas-forming organisms (presumably B. coli) in at least three out of five portions of 10 c.c. from the sample tested. One reason for this appreciation is the improvement in public health diagnosis; this, in turn, to better vital statistics, better organization of the health authorities and refinements in clinical methods.”

Commentary: Only 14 years after chlorination began to eradicate waterborne disease, an enlightened public began to demand higher quality water—as they should.

Reference: Engineering and Contracting. 1922. 57:2(January 11, 1922): 22-3.

May 5, 1858: Birth of John L. Leal

0313 John Leal @ Beach w- hatMay 5, 1858: 157th anniversary of the birth of John L. Leal, physician and water treatment expert who pioneered chlorine disinfection in the U.S. There are many unsung heroes who contributed significantly to public health at the turn of the 20th century. John L. Leal is one of them and after reading this, I think you will agree that he did more than most to save people’s lives.

John L. Leal was born in the small town of Andes, New York on May 5, 1858. His father, John Rose Leal was a physician who joined the 144th Regiment, New York Volunteers and fought in the Civil War. During the siege of Charleston, South Carolina, John Rose Leal contracted what was most likely a case of amoebic dysentery from contaminated drinking water. He suffered from the disease for more than 17 years before he finally died of it in 1882.

John L. Leal attended Princeton College and graduated in 1880. He went on to Columbia College of Physicians and Surgeons finishing his medical education in 1883. He opened a medical practice in Paterson, New Jersey and went to work for the Paterson Board of Health where he remained until 1899. He left City employment and became the sanitary adviser to private water companies including the East Jersey Water Company and the Jersey City Water Supply Company. In 1888, he married Amy L. Arrowsmith and they had one son, Graham, later that year. So far, his life was well spent but not exemplary.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses. The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1909 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on a large-scale basis or over any continuous time period.

But, there was a problem. The public feared chemicals in their food, medicines and water. Adulteration of food and medicines was rampant during this period, which was faithfully catalogued in Upton Sinclair’s The Jungle.

“How could they know that the pale-blue milk that they bought around the corner was watered, and doctored with formaldehyde besides?. . .How could they find out that their tea and coffee, their sugar and flour, had been doctored; that their canned peas had been colored with copper salts, and their fruit jams with aniline dyes?”(1)

At any conference of water professionals in the late 19th and early 20th centuries, strong language was used to oppose chemical disinfection. Even George W. Fuller early in his career was not supportive of chemical disinfectants.

1893, George Warren Fuller: “While chemicals have been of much aid in surgery by bringing about antisepsis and asepsis, it is very improbable that people would allow their drinking water to be drugged with chemicals, even with the view of removing dangerous bacteria–indeed, such a method might prove very dangerous in many cases.”(2)

1894, Thomas M. Drown: “…the idea itself of chemical disinfection is repellent.”(3)

1904, George C. Whipple: “Thus in St. Louis the popular prejudice against the use of alum in clarifying the water is said to be so intense that a local engineer has said ‘it is very doubtful if alum could be used, no matter how excellent the results which might be obtained.’. . .‘We don’t want to drink puckered water.’”(4)

1906, George C. Whipple: “The idea of adding poisonous chemicals [like chlorine] to water for the purpose of improving its quality for drinking purposes has generally been considered as illogical and unsafe. . .”(5)

1906, William P. Mason: “I very much question if the public at large would be willing to disinfect water to-day. We are scarcely driven that far yet.”(6)

1906, P.A. Maignen: “Among the so-called ‘disinfectants’ tried may be cited copper, chlorine and oxalic acid. . .Such poisonous materials should not be permitted to be used on water intended for public supplies.”(7)

Nonetheless, Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward. Where he found the courage to follow the path of chemical disinfection when all of the experts railed against it is not known for certain. His father’s gruesome illness and death and the unnecessary deaths he personally observed as Health Officer for Paterson must have contributed to his decision.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2012, marks the 104th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

In a second trial, the court vindicated Leal’s decision. Afterwards, the use of chlorine spread like wildfire throughout the U.S. Typhoid fever death rates plummeted and children under one year of age stopped dying by the hundreds of thousands.

John L. Leal was not a physically imposing figure. Photographs of him show a man of average height and build with a kind face. Nothing in his appearance hinted at the steel spine and dogged courage that he possessed. One definition of the word hero reads: “a man of distinguished courage or ability, admired for his brave deeds and noble qualities.” These days, many people feel that the word hero has been overused in this country. I think that promoting a water treatment process that saves millions of lives qualifies Leal to be known as a Hero of Public Health.

Why doesn’t everyone know about Leal? Another man, George A. Johnson was wrongly given the credit for the idea of chlorinating the water supply for Jersey City. Johnson was able to get away with his charade, in part, because John L. Leal died on March 13, 1914, and Johnson lived for another 20 years.

Still not convinced? Well, you will have to wait for the full story that has been published in my book, The Chlorine Revolution: Water Disinfection and the Fight to Save Lives which will be available for shipment on March 20, 2013.(8)

References

(1) Sinclair, Upton. The Jungle: With an Afterword by Emory Elliott. New York:Signet Classic, 1990, original copyright 1905, originally published in 1904.

(2) Fuller, George W. “Sand Filtration of Water, with Special Reference to Results Obtained, at Lawrence, Massachusetts.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 64-71. 1895.

(3) Drown, Thomas M. “The Electrical Purification of Water.” Journal NEWWA. 8 (1894): 183-7.

(4) Whipple, George C. Discussion of “Purification of Water for Domestic Use.” Transactions ASCE. 54:Part D (1905): 192-206.

(5) Whipple, George C. “Disinfection as a Means of Water Purification.” Proceedings AWWA. (1906): 266-80.

(6) Mason, William P. “Discussion.” Proceedings AWWA. (1906): 282-3.

(7) Maignen, P.A. “Discussion.” Proceedings AWWA. (1906): 285-6.

(8) McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, Colorado:American Water Works Association. 2013.

Commentary: On May 5, 2013, at Cedar Lawn Cemetery in Paterson, New Jersey, a grave monument was dedicated to Dr. Leal. For 98 years, his grave was unmarked. The granite obelisk has the names of John L. Leal and five members of his immediate family carved on the sides. Under John L. Leal’s name is the descriptor: Hero of Public Health.

March 13, 1914: Death of John L. Leal

Dr. John L. Leal

Dr. John L. Leal

March 13, 1914: Death (in Paterson, NJ) of John L. Leal, physician and water treatment expert who pioneered chlorine disinfection in the U.S. There are many unsung heroes who contributed significantly to public health at the turn of the 20th century. John L. Leal is one of them and after reading this, I think you will agree that he did more than most to save people’s lives.

John L. Leal was born in the small town of Andes, New York on May 5, 1858. His father, John Rose Leal was a physician who joined the 144th Regiment, New York Volunteers and fought in the Civil War. During the siege of Charleston, South Carolina, John Rose Leal contracted what was most likely a case of amoebic dysentery from contaminated drinking water. He suffered from the disease for more than 17 years before he finally died of it in 1882.

John L. Leal attended Princeton College and graduated in 1880. He went on to Columbia College of Physicians and Surgeons finishing his medical education in 1883. He opened a medical practice in Paterson, New Jersey and went to work for the Paterson Board of Health where he remained until 1899. He left City employment and became the sanitary adviser to private water companies including the East Jersey Water Company and the Jersey City Water Supply Company. In 1888, he married Amy L. Arrowsmith and they had one son, Graham, later that year. So far, his life was well spent but not exemplary.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses. The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1909 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on a large-scale basis or over any continuous time period.

But, there was a problem. The public feared chemicals in their food, medicines and water. Adulteration of food and medicines was rampant during this period, which was faithfully catalogued in Upton Sinclair’s The Jungle.

“How could they know that the pale-blue milk that they bought around the corner was watered, and doctored with formaldehyde besides?. . .How could they find out that their tea and coffee, their sugar and flour, had been doctored; that their canned peas had been colored with copper salts, and their fruit jams with aniline dyes?”(1)

At any conference of water professionals in the late 19th and early 20th centuries, strong language was used to oppose chemical disinfection. Even George W. Fuller early in his career was not supportive of chemical disinfectants.

1893, George Warren Fuller: “While chemicals have been of much aid in surgery by bringing about antisepsis and asepsis, it is very improbable that people would allow their drinking water to be drugged with chemicals, even with the view of removing dangerous bacteria–indeed, such a method might prove very dangerous in many cases.”(2)

1894, Thomas M. Drown: “…the idea itself of chemical disinfection is repellent.”(3)

1904, George C. Whipple: “Thus in St. Louis the popular prejudice against the use of alum in clarifying the water is said to be so intense that a local engineer has said ‘it is very doubtful if alum could be used, no matter how excellent the results which might be obtained.’. . .‘We don’t want to drink puckered water.’”(4)

1906, George C. Whipple: “The idea of adding poisonous chemicals [like chlorine] to water for the purpose of improving its quality for drinking purposes has generally been considered as illogical and unsafe. . .”(5)

1906, William P. Mason: “I very much question if the public at large would be willing to disinfect water to-day. We are scarcely driven that far yet.”(6)

1906, P.A. Maignen: “Among the so-called ‘disinfectants’ tried may be cited copper, chlorine and oxalic acid. . .Such poisonous materials should not be permitted to be used on water intended for public supplies.”(7)

Nonetheless, Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward. Where he found the courage to follow the path of chemical disinfection when all of the experts railed against it is not known for certain. His father’s gruesome illness and death and the unnecessary deaths he personally observed as Health Officer for Paterson must have contributed to his decision.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2012, marks the 104th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

In a second trial, the court vindicated Leal’s decision. Afterwards, the use of chlorine spread like wildfire throughout the U.S. Typhoid fever death rates plummeted and children under one year of age stopped dying by the hundreds of thousands.

John L. Leal was not a physically imposing figure. Photographs of him show a man of average height and build with a kind face. Nothing in his appearance hinted at the steel spine and dogged courage that he possessed. One definition of the word hero reads: “a man of distinguished courage or ability, admired for his brave deeds and noble qualities.” These days, many people feel that the word hero has been overused in this country. I think that promoting a water treatment process that saves millions of lives qualifies Leal to be known as a Hero of Public Health.

Why doesn’t everyone know about Leal? Another man, George A. Johnson was wrongly given the credit for the idea of chlorinating the water supply for Jersey City. Johnson was able to get away with his charade, in part, because John L. Leal died on March 13, 1914, and Johnson lived for another 20 years.

Still not convinced? Read The Chlorine Revolution: Water Disinfection and the Fight to Save Lives which was published in April 2013.(8)

References

(1) Sinclair, Upton. The Jungle: With an Afterword by Emory Elliott. New York:Signet Classic, 1990, original copyright 1905, originally published in 1904.

(2) Fuller, George W. “Sand Filtration of Water, with Special Reference to Results Obtained, at Lawrence, Massachusetts.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 64-71. 1895.

(3) Drown, Thomas M. “The Electrical Purification of Water.” Journal NEWWA. 8 (1894): 183-7.

(4) Whipple, George C. Discussion of “Purification of Water for Domestic Use.” Transactions ASCE. 54:Part D (1905): 192-206.

(5) Whipple, George C. “Disinfection as a Means of Water Purification.” Proceedings AWWA. (1906): 266-80.

(6) Mason, William P. “Discussion.” Proceedings AWWA. (1906): 282-3.

(7) Maignen, P.A. “Discussion.” Proceedings AWWA. (1906): 285-6.

(8) McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, Colorado:American Water Works Association. 2013.

Grave Monument for Dr. Leal

Grave Monument for Dr. Leal

January 11, 1922: Chlorination of New England water supplies and Demands for Lower Color Content of Drinking Water

0111 NEWWA no cl2January 11, 1922: Two fascinating articles in Engineering and Contracting about the progress of water treatment, regulations and disinfection in U.S. water supplies in 1922.

“The Chlorination of New England Water Supplies.” By William J. Orchard. “One thousand nine hundred and ninety-six: communities In the United States chlorinate water or sewage or both with liquid chlorine. Only 128 or 6 per cent of these are in New England. Twelve are treating sewage, leaving but 116 New England communities chlorinating drinking water. Nearly half, 43 per cent, of these are in Connecticut where 51 communities use liquid chlorine to safeguard their water supplies, 24 are in Maine, 16 are in New Hampshire, 11 in Rhode Island, Massachusetts has nine while Vermont has three communities using liquid chlorine for their water supplies.

Scoring the states in this country in accordance with the number of communities using liquid chlorine and starting with New York in first place with 254, ending with Nevada in 48th place with but one lone chlorinating community we find Connecticut stands 11th, Maine 25th, New Hampshire 30th, Rhode Island 36th, Massachusetts 41st, and Vermont 47th.

A manufacturer of chlorinating equipment naturally asks why this relatively small number of communities using liquid chlorine in certain sections of New England? Now, in trying to answer that question, the speaker appreciates that he is skating on thin ice-dangerously near a deep hole labeled ‘The Johnsonian Controversy,’ and caution dictates that he skate the other way.

But it is a fact that there is more resistance to the chlorination of drinking water in New England than in any other section of the country. Some of this is due to a firm, honest conviction in the purity and safety of unsterilized water supplies-some of this is due to complete deep rooted faith in the absolute efficacy of storage and water shed patrol—but, in the writer’s opinion, the principle cause for this resistance to chlorination in New England Is the marked aversion found In some quarters to the application of chemicals in any form to drinking water. It matters not if, as in the case of sterilization, a barrel full of chlorine will suffice for a Woolworth building filled with water. The objection is to the application of chemicals in any form-no matter what the chemicals may be. This attitude was clearly expressed by one of New England’s most prominent engineers who said to the speaker, ‘Up here we don’t want medicated waters.’”

Commentary: I am not sure what “The Johnsonian Controversy” was but Orchard correctly points out the resistance to chlorination in New England. Antagonism against the use of chemicals in drinking water treatment was, in large part, due to the influence of the Lawrence Experiment Station on the actions of water plants.

Engineering and Contracting article. “Some Features of Present Water Supply Practice.” Nicholas S. Hill, Chairman. “Water Quality Standards—Standards of quality are steadily rising and bid fair to continue doing so. Communities no longer consider safety sufficient, but demand a drinking water of good appearance. This demand has good scientific foundation for the best appearing waters are frequently the safer.

In certain sections, the northeast particularly, waters having colors of 25 or more are still used without complaint. These colors would not be tolerated in western cities supplied with lake or filtered river water, or even in New England. Public opinion is fast getting in a position to demand water of an average color of 10 parts per million or less with a maximum of 15. Particular objection is made to colored surface waters containing odoriferous organisms and turbidity, whether due to heavy microscopic growths, to clay, or to iron rust, is also objectionable.

While the bacteriological standard of the U. S. Public Health Service [1914] met with considerable criticism because of its alleged severity and because it excluded certain water supplying communities in which good public health conditions prevailed. It can not be denied that those who are aiming to supply waters of high quality are trying to equal or better this standard which, as is well known, commands that all waters used in inter-state commerce shall contain no gas-forming organisms (presumably B. coli) in at least three out of five portions of 10 c.c. from the sample tested. One reason for this appreciation is the improvement in public health diagnosis; this, in turn, to better vital statistics, better organization of the health authorities and refinements in clinical methods.”

Commentary: Only 14 years after chlorination began to eradicate waterborne disease, an enlightened public began to demand higher quality water—as they should.

Reference: Engineering and Contracting. 1922. 57:2(January 11, 1922): 22-3.