Tag Archives: chloride of lime

#TDIWH—February 27, 1913: Croton Chlorination Plant

0227 Croton Cl2 plantcFebruary 27, 1913: Engineering News article. Chlorinating Plants, Croton Water Supply. “Synopsis—Operating results of a temporary plant, which treated with hypochlorite of lime more than 100 billion gallons of Croton water for New York City in 1912, are given. A permanent hypochlorite or chlorinating plant, to treat the flow through both the old and the new Croton aqueducts, is described and fully illustrated. Brief descriptions are given of four other chlorination plants in the Croton drainage area: Three to treat the waters of tributaries of the Croton before it reaches the main supply and one to treat another tributary and a part of the sewage of the village of Brewster, N. Y.”

In June, 1910, I. M. de Varona, chief engineer of the Department of Water Supply, Gas and Electricity of the City of New York, made trials of hypochlorite treatment in connection with the Croton water-supply. The results were so satisfactory that its use has been extended until the city now maintains five of these plants: one on the New Aqueduct at Pocantico, treating the entire supply from the Croton, and the other four upon various tributaries of the reservoirs.

The continuous treatment of the flow of the New Croton Aqueduct was commenced in June, 1911, the plant being located at Shaft No. 9, north of Tarrytown, N. Y., known as the Pocantico plant. It consists of a rough frame building which houses two cement-lined cypress tanks, 12 ft. in diameter and 6 ft. in height, and a constant-level feeding tank with adjustable orifice discharging through a manhole into the crown of the aqueduct. Within the aqueduct, there is suspended a wooden grid to secure a proper mixture of the chlorine solution and the flowing water. The operating floor is just above the solution tanks and in it are two screened mixing pits.

In operation, a drum of lime, weighing about 800 lb., is rolled into position over a pit and the contents washed out into the pit by a hose stream under pressure. Enough ‘bleach’ is dissolved to treat the aqueduct flow for 12 hours. The tank is then filled with water and stirred to assure the thorough absorption of the chlorine. Four men operate the plant, two on the clay shift, making solution, and one on each of the night shifts, maintaining a constant, uniform flow of the solution.

0227 Croton Cl2 plantbExperience has shown the desirable amount of chlorine to be between 0.40 and 0.65 p.p.m. (parts per million). The lower amount is used in warm weather and when Croton Lake is near the high water line. The amount is gradually increased as the storage in Croton Lake drops or the temperature of the water approaches freezing. The amount of ‘bleach’ to be used daily is determined from a chart (Fig. 1), which shows that the daily amount of chemical is about 4000 lb. Where so much chemical is used, the chart shows the economy resulting from varying the charge of ‘bleach’ in accordance with the amount of its available chlorine, as determined by laboratory analysis.”

Reference: Coffin, T.D.L. 1913. “Chlorinating Plants, Croton Water Supply.” Engineering News. 69:9(February 27, 1913): 419-21.

Commentary: New York City began testing chloride of lime to disinfect the Croton water supply shortly after the findings of the special master in the second Jersey City trial which has been described at length in The Chlorine Revolution: Water Disinfection and the Fight to Save Lives.

0227 Croton Cl2 planta

#TDIWH—February 4, 1909: Second Use of Chlorine in the U.S.; 1877: Birth of C.E.A. Winslow

Little Falls Water Treatment Plant

Little Falls Water Treatment Plant

February 4, 1909: Dr. John L. Leal testified at the second Jersey City trial about the first use of chlorine for continuous disinfection of a U.S. water supply at Boonton Reservoir, which was the water supply for Jersey City, New Jersey. The transcript from February 5, 1909, revealed that Leal had also installed a chloride of lime feed system at the filtration plant at Little Falls, New Jersey. He stated that he had experimented with chloride of lime addition some months before and that he was now using it daily. Thus, the trial transcript provides the first written evidence of the second continuous use of chlorine to disinfect a drinking water supply. This was also the first time chlorine was used in conjunction with mechanical filtration.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

0108 CEA WinslowFebruary 4, 1877: Charles-Edward A. Winslow is born. “Charles-Edward Amory Winslow (4 February 1877 – 8 January 1957) was an American bacteriologist and public health expert who was, according to the Encyclopedia of Public Health, “a seminal figure in public health, not only in his own country, the United States, but in the wider Western world.”

Winslow was born in Boston, Massachusetts and attended Massachusetts Institute of Technology (M.I.T.), obtaining a B.S. in 1898 and an M.S. in 1910.

He began his career as a bacteriologist. He met Anne Fuller Rogers when they were students in William T. Sedgwick’s laboratory at M.I.T., and married her in 1907. He taught at the Massachusetts Institute of Technology while heading the sewage experiment station from 1908 to 1910, then taught at the College of the City of New York from 1910 to 1914.

He was the youngest charter member of the Society of American Bacteriologists when that organization was founded in 1899. With Samuel Cate Prescott he published the first American textbook on the elements of water bacteriology.

In 1915 he founded the Yale Department of Public Health within the Yale Medical School, and he was professor and chairman of the Department until he retired in 1945. (The Department became the Yale School of Public Health after accreditation was introduced in 1947.) During a time dominated by discoveries in bacteriology, he emphasized a broader perspective on causation, adopting a more holistic perspective. The department under his direction was a catalyst for health reform in Connecticut. He was the first director of Yale’s J.B. Pierce Laboratory, serving from 1932 to 1957. Winslow was also instrumental in founding the Yale School of Nursing.

He was the first Editor-in-Chief of the Journal of Bacteriology, serving in that position from 1916 to 1944. He was also editor of the American Journal of Public Health from 1944 to 1954. He was curator of public health at the American Museum of Natural History from 1910 to 1922. In 1926 he became president of the American Public Health Association, and in the 1950s was a consultant to the World Health Organization.”

#TDIWH—January 15, 2009: PFOA Provisional Health Advisory; 1917: Death of William J. Magie

Perfluorooctanoic acid (PFOA)

Perfluorooctanoic acid (PFOA)

January 15, 2009: On January 15, 2009, the USEPA set a provisional health advisory level for PFOA of 0.4 parts per billion in drinking water. “Perfluorooctanoic acid (PFOA), also known as C8 and perfluorooctanoate, is a synthetic, stable perfluorinated carboxylic acid and fluorosurfactant. One industrial application is as a surfactant in the emulsion polymerization of fluoropolymers. It has been used in the manufacture of such prominent consumer goods as Teflon and Gore-Tex. PFOA has been manufactured since the 1940s in industrial quantities. It is also formed by the degradation of precursors such as some fluorotelomers.

PFOA persists indefinitely in the environment. It is a toxicant and carcinogen in animals. PFOA has been detected in the blood of more than 98% of the general US population in the low and sub-parts per billion range, and levels are higher in chemical plant employees and surrounding subpopulations. Exposure has been associated with increased cholesterol and uric acid levels, and recently higher serum levels of PFOA were found to be associated with increased risk of chronic kidney disease in the general United States population, consistent with earlier animal studies. ‘This association was independent of confounders such as age, sex, race/ethnicity, body mass index, diabetes, hypertension, and serum cholesterol level.’”

Jersey City Chlorination Facility at Boonton Reservoir

Jersey City Chlorination Facility at Boonton Reservoir

January 15, 1917: Death of William J. Magie. In 1899, Jersey City, New Jersey contracted for the construction of a new water supply on the Rockaway River, which was 23 miles west of the City. The water supply included a dam, reservoir and 23-mile pipeline and was completed on May 4, 1904. As was common during this time period, no treatment (except for detention and sedimentation fostered by Boonton Reservoir) was provided to the water supply. City officials were not pleased with the project as delivered by the private water company and filed a lawsuit in the Chancery Court of New Jersey. Among the many complaints by Jersey City officials was the contention that the water served to the City was not “pure and wholesome” as required by the contract. William J. Magie was selected by Vice Chancellor Frederic W. Stevens to hear the second part of the case in which the use of chlorine for disinfection was a contentious issue. One might assume that someone relatively junior might be appointed as the Special Master to hear the highly technical and excruciatingly long arguments from both sides of the case. Not so. William Jay Magie was one of the most revered judges of this time period. He took the role of Special Master in 1908 after completing 8 years as Chancellor of the Court of Chancery. Prior to that, he was a member of the New Jersey Senate (1876-1878), Associate Justice of the New Jersey Supreme Court (1880-1897) and Chief Justice of the same court from 1897 to 1900. (Marquis 1913)

“As a trial judge his cases were handled with notable success, as he had ample experience in trying causes before juries and a just appreciation of the worth of human testimony…” (Keasbey 1912) Judge Magie would need all of his powers of appreciation of human testimony in the second trial, which boiled down to which of the expert witnesses could be believed when both sides marshaled some of the most eminent doctors, scientists and engineers in the land.

Judge Magie was born on December 9, 1832 in Elizabeth, New Jersey and lived his life in that town. He graduated from Princeton College in 1852 and studied law under an attorney in Elizabeth. He was admitted to the bar of New Jersey in 1856. At the time of the second trial in 1909 he was 77 years old and near the end of his distinguished career.

On May 9, 1910, William J. Magie submitted his Special Master Report. One of Magie’s findings was of critical importance to the defendants because he laid to rest the concern that chlorine was a poison that would harm members of the public who consumed the water.

“Upon the proofs before me, I also find that the solution described leaves no deleterious substance in the water. It does produce a slight increase of hardness, but the increase is so slight as in my judgment to be negligible.” (Magie, In Chancery of New Jersey, 1910)

The Special Master Report then delivered the finding that defendants had been waiting for:

“I do therefore find and report that this device is capable of rendering the water delivered to Jersey City, pure and wholesome, for the purposes for which it is intended, and is effective in removing from the water those dangerous germs which were deemed by the decree to possibly exist therein at certain times.” (emphasis added) (Magie, In Chancery of New Jersey, 1910)

Magie’s finding summarized in this one sentence approved the use of chlorine for drinking water. After this ruling, the use of chlorine for drinking water disinfection exploded across the U.S. (McGuire 2013)

In a filing after Magie’s final decree, compensation for Judge Magie was noted as $18,000 for the entire second trial with its 38 days of testimony over 14 months, dozens of briefs and hundreds of exhibits. It must have been the hardest $18,000 he ever earned.

References:

  • Keasbey, E.Q. (1912). The Courts and Lawyers of New Jersey, 1661-1912. Vol. 3, New York:Lewis Historical Publishing Co.
  • Magie, William J. (1910). In Chancery of New Jersey: Between the Mayor and Aldermen of Jersey City, Complainant, and the Jersey City Water Supply Co., Defendant. Report for Hon. W.J. Magie, special master on cost of sewers, etc., and on efficiency of sterilization plant at Boonton, Press Chronicle Co., Jersey City, New Jersey, (Case Number 27/475-Z-45-314), 1-15.
  • Marquis, Albert N. (1913). Who’s Who in America. 7, Chicago:A.N. Marquis.
  • McGuire, Michael J. (2013). The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

December 21, 1868: Birth of George Warren Fuller

George Warren Fuller, 1903, 35 years old

George Warren Fuller, 1903, 35 years old

December 21, 1868: Birth of George Warren Fuller in Franklin, Massachusetts. George Warren Fuller was, quite simply, the greatest sanitary engineer of his time, and his time was long—lasting from 1895 to 1934.  In truth, we have not seen his like since.  How did he reach the pinnacle of his field?  What early influences led him on his path? There is a biography of Fuller on Wikipedia that I wrote which summarizes his life from a “neutral point of view.” The material below is taken in part from Chapter 7 of The Chlorine Revolution:  Water Disinfection and the Fight To Save Lives. By design, it gives more of a personal flavor to his life.

George Warren Fuller was born in Franklin, Massachusetts on December 21, 1868—ten years after the death of Dr. John Snow and ten years after the birth of Dr. John L. Leal.  He was the son of George Newell Fuller and Harriet Martha Craig. There is not much known about his father who was simply described as a farmer.  His father was born on the Fuller family property in Franklin, Massachusetts on November 22, 1819.

Harriet Martha Craig was born on February 2, 1841, grew up near Leicester, Massachusetts, and attended Mount Holyoke College, but she did not graduate.  Her final year at the institution was 1865.  They were married on November 15, 1866 when he was 46 and she was only 25.  They settled down in the Franklin-Medway area of rural Massachusetts for a quiet life of farming on the ancestral Fuller family property.  They had two children, George W. and Mabel B. who was born in 1876.  We know that George kept in touch with his younger sister in later years.  She married Carl W. DeVoe and moved to Jerome, Idaho. George owned a ranch in Idaho and must have visited her there.

Place names in Massachusetts have changed over the past several hundred years as the land area covering certain towns changed due to the expansion and contraction of town boundaries or as a result of new towns being carved off from old ones.  Towns that figured prominently in Fuller’s history, Dedham, Franklin and West Medway, all describe the same general area, which is about 10-25 miles southwest of Boston.

We know only a little about his early education.  One report observed:

“George Warren Fuller was at the head of his class when he attended the Dedham schools. His scholarship was, of course, a source of great satisfaction to his mother. At sixteen he passed the examination for entrance at MIT but, his father having died a few weeks before, it was thought best for him to have a fourth year in high school….”

After his father’s death on May 3, 1885, his mother moved 2,500 miles away to Claremont, California where she lived until she died in 1915.  George must have felt that he had lost both parents at the same time.  We do not know if he was looking for a stable family life to replace the one he had lost, but we do know that he married when he was only two years out of high school, in 1888.  His first wife, Lucy Hunter was born in October 1869 and died far too young on March 18, 1895. Lucy came from a family who immigrated to America from New Brunswick and Prince Edward Island.  Her father was born about 1830 and listed his occupation as farmer.  Her mother, Sarah, was born about 1845.  The farming family had seven children, three boys and four girls.  They must have moved to Boston from New Brunswick sometime between 1877 and 1880.  The youngest boy, Harry, was born in New Brunswick about 1877. I recently heard from a descendant of Lucy Fuller who was researching her family. According to her second cousin, three times removed, the family was sailing from Northern Ireland to Philadelphia in 1767 when their ship was wrecked off of Nova Scotia. Lucy’s family eventually made it to Boston while many of the other Hunters moved on to Ontario, Canada.

In 1880, the U.S. census showed that her family lived in Boston at 218 Bennington Street, which is now near Boston Logan International Airport and was located near cultivated land in the late 1800s.  The address is about three miles from the MIT campus, as the crow flies.

Lucy was 18 years old and Fuller was 20 years old when they were married.  Fuller was only in his second year at university (1886-1890).  They had one son, Myron E. Fuller who was born in Boston on June 4, 1889. We do not know much about the marriage, but we do know that George W. Fuller was issued a passport on May 2, 1890 for his trip to Germany and his continued studies. There is no record that Lucy or Myron applied for a passport or accompanied Fuller to Germany.  Massachusetts death records listed her cause of death as “enteritis” which was a general term used for diseases caused by the ingestion of pathogens from food or water.  The death records listed her as “married” which meant that her marriage to Fuller was not dissolved prior to her death. There is no evidence that George W. Fuller lived with her and their son after 1889.

From a 1910 census report, it is clear that Myron lived with his father in Summit, New Jersey.  One recorded connection we know of between Myron and his father was mentioned in the preface of Fuller’s 1912 book, Sewage Disposal. Fuller acknowledged Myron (who was 22 years old at the time) for creating the index to the book.  One source showed that Fuller and McClintock employed Myron from 1911 to 1916 and again from 1919 until at least 1922. In 1918, Myron registered for the draft and listed his occupation as civil engineer. The same reference showed Myron working for the City of Philadelphia in the Bureau of Surveys—the same occupation as his great-great-great-great grandfather, Ensign Thomas Fuller.  He lived in Philadelphia with his wife and one child.

While Fuller was in Louisville working on the filtration investigations, he met Caroline L. Goodloe who came from a fine, old Louisville family.  In November 1899, Fuller married her in Louisville. They were both 31 years old when they were married.  In May of 1900, husband and wife went on a trip to Europe—a somewhat delayed honeymoon. Their son, Kemp Goodloe Fuller, was born on March 10, 1901. On November 11, 1903, while living in New York City, their second son, Asa W. Fuller was born.

We know from records published in the annual report of the APHA and other sources that Fuller had his offices in New York City at 220 Broadway for many years beginning in 1899, which was the same address given by Allen Hazen for his offices for a short period of time.

Tragically, Caroline Goodloe Fuller died in June 21, 1907, while George W. Fuller was most heavily engaged in numerous water and sewage disposal projects all over the U.S.  At her death, George W. Fuller was living at 309 West 84th Street in New York City with his wife and their sons.  She was 38 years old.

The 1910 Census form showed that Fuller was living at 160 Boulevard, Summit, New Jersey with Alice C. Goodlow (sic) who was identified as his sister-in-law, Mary L. Goodlow (sic) identified as his mother-in-law and his three sons Myron, Kemp G. and Asa.  George’s in-laws had come up from Louisville to help him raise the boys.  Also listed at the same residence was an interesting guest, Grace F. Thomson, 43, born in China of English ancestry and claiming a trade of metal working.  In addition, there were three servants (two Irish and one Greek) making it a full and busy household.  The census form showed him as widowed, so by 1910 he had not remarried.

We know from several accounts, that George Warren Fuller was, in many ways, a big man.  Physically, he was tall.  An account by a colleague said that he was over six feet tall, but passport application forms that Fuller filled out showed that his height was 5 feet 10 inches. Pictures of him from 1903 until at least 1928 showed that he was, to use a descriptor from the time, stout. One description had him at 285 pounds with a size 18 collar.

His hair was dark brown and, in the style of the day, slicked down and parted in the middle.  As time marched on, he began to gray at the temples and then the gray seemed to take over his thinning head of hair.  He was clean-shaven except for his days in Louisville during the filtration studies, when he sported a bushy mustache.  He had blue eyes that could bore into someone who did not please him and twinkle when he was trying to charm a lady.  The round spectacles that he always wore did not detract from the intensity of his blue eyes.

Commentary: George Warren Fuller Comes to California…in 2012

On April 3 2012, I gave a talk at the California Nevada Section Conference of the American Water Works Association. I teamed up with John Marchand who gave a talk on Dr. John Snow of Broad Street Pump fame. We made a pact to give our talks in costume, which incredibly we both followed through on. Below are links to my talk broken up into three parts (YouTube restrictions). It describes Fuller’s life and the first use of chlorine on the Jersey City water supply in 1908.

Part 1:  http://youtu.be/37WZkp5148w

Part 2:  http://youtu.be/rsicrBvVMc4

Part 3:  http://youtu.be/n6PuOvjjQMI

September 3, 1908: Bubbly Creek Chlorine Test; 1892: Start of Chicago Sanitary Ship Canal

Chicago, Union Stockyards, 1908

Chicago, Union Stockyards, 1908

September 3, 1908:  First day of chloride of lime (chlorine) testing at the Union Stockyards Filtration Plant.  The water source was the foul, polluted Bubbly Creek, a tributary to the Chicago River.  The water produced during the test was used to provide water to cows and pigs. George A. Johnson who was involved in the test claimed that he was responsible for the first large-scale use of chlorine in water in the U.S. The following excerpt from The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives demonstrates that his claim was bogus.

Much is made in subsequent histories of the early use of chlorine and Johnson’s role in the addition of chlorine to the Bubbly Creek plant that also occurred during 1908.  In several exchanges with Mr. Edwards (direct examination) on October 5, 1909, the thirty-fourth day of testimony during the second phase of the trial, Johnson described his role at the Bubbly Creek plant in 1908.

“Q.  Did you have charge of the first plant at Bubbly Creek in the stock yards in Chicago, and the purification of waters therefrom?

  1. I was appointed referee in a test which was run on the stock yards filter plant in the months of April and September 1908, and the plant was, during that period, virtually under my direction.” (emphasis added)

Johnson was under oath and he chose his words carefully when he answered the question.  It is clear, that his work on the Bubbly Creek plant was a test and not a full-scale demonstration of chlorine disinfection technology, nor was it anything approaching a continuous use of chlorine to disinfect a water supply for human consumption.  The Bubbly Creek plant consisted of coagulation with lime and iron or alum followed by sedimentation for three hours.  The settled water was treated with chloride of lime at an available chlorine dose of more than 1 ppm followed by filtration through a sand filter.  Johnson’s testimony then described the source of water for the Bubbly Creek plant.

“Q.  What is the character of the water treated so far as pollution is concerned?

  1. The raw water pumps take out of probably the foulest estuary in the world—
  2. The Chicago river?
  3. It is a branch of the Chicago river.  It has been notorious for a great many years and was given the name of Bubbly Creek by reason of the fact that gas is rising over the entire surface all of the time.  The water which flows through this creek is merely the drainage from seventeen thousand acres of southeastern Chicago and on this area there is resident about 200 thousand people.  The sewage from this area and the street washings also are discharged in this creek.

“Q.  What is done with this water after it is treated?

  1. It is used for watering the stock in the Union Stock Yard in Chicago.”

At the end of his testimony on October 5, 1909, George A. Johnson stated:

“I recommended the use of hypochloride (sic) of lime in connection with the Bubbly Creek filter plant in May, 1908, believing that was the only chemical that would make possible the achievement of satisfactory results.  I had had no actual experience of much moment with this chemical but had gained a good deal of knowledge regarding its sterilizing powers from conversations with various scientists in this country and in Europe and from reading various documents descriptive of tests that had been made with it.  The plant at Bubbly Creek was a failure until this sterilization agent was used.”

Also stated in the examination of Johnson were statements that acknowledged Leal’s role at Boonton:  “…the process installed by Dr. Leal…” and “…the result of purification in Dr. Leal’s system of purification at Boonton…”

A two-page paper published obscurely in 1909 could have set the record straight on what actually happened at the Bubbly Creek plant if anyone had read it.  It was written by Adolph Gehrmann who was part of the two-man team doing the tests on the Bubbly Creek plant.

“I desire to bring to your attention some of the data relating to a purification plant now under test at the Union Stock Yards, Chicago….Mr. George A. Johnson and myself were selected to conduct tests during operation as a basis for determining the various elements of efficiency as required under the contract.” (emphasis added)

“During the fourth period of test it had been determined, on the suggestion of Mr. Johnson, to introduce chloride of lime as an oxidizing and germicidal agent in place of copper sulphate.”(emphasis added)

Because the “fourth period of test” at the Union Stock Yards was carried out in September 1908 and Johnson had been working with Fuller since July 19, 1908 on the full-scale Boonton plant, it is not hard to figure out where Johnson got the idea to test chloride of lime.  It is highly unlikely that he figured out all on his own that chlorine should be added to the Bubbly Creek plant sometime in May 1908.

Apparently, the tests at the Union Stock Yards worked to the satisfaction of the researchers although B. colon was still found in the effluent.  Nonetheless, the water was good enough, despite some “taste” to the water, to put it in the hog and cattle pens.  “…it was drunk by the stock very readily.”

In 1910, an article appeared in Engineering News which reviewed all of the issues associated with the construction of the Bubbly Creek treatment plant and the use of the water from the plant.  In 1909, a lawsuit was brought by the City of Chicago against the Union Stock Yard company to discontinue use of any water from the Bubbly Creek treatment plant for any purposes related to watering cattle.  In the trial, the City claimed that water from the plant was being consumed by people in direct conflict with any imaginable iota of good sense.  A key point in the case was that cattle producers believed that their cattle put on less weight when they were given water from the Bubbly Creek plant as opposed to City water.  The company denied their contention but agreed as a smart business practice to stop using the water.  The treatment plant was subsequently shut down.

Johnson wrote and had published in Engineering News three weeks later a 5,000 word letter defending the Union Stock Yard company and himself.  Along with his creative use of the calendar and a few facts, his defense was not persuasive.

In 1913, Johnson once again tried to make the case that the water treated from the foul Bubbly Creek was as good as other water from polluted sources. His arguments were not convincing.

Therefore, Mr. Johnson’s testimony and Gehrmann’s paper showed that for a few days in September 1908, Johnson was a referee at a test of chloride of lime at a Chicago treatment plant treating raw sewage to act as a water supply for cattle.  According to Johnson, he recommended this test in May 1908 although the actual tests did not take place until four months later, September 3 to 17, 1908.  Dr. Leal stated in his testimony that he devised his chloride of lime alternative treatment for the Boonton water supply on or shortly after May 1, 1908.

References:

Between Jersey City and Water Company, October 5, 1909, 6668-6670.

Between Jersey City and Water Company, October 5, 1909, 6674.

Between Jersey City and Water Company, October 5, 1909, 6672-6673.

Gehrmann, “Experiment in Chemical Purification,” 120.

Baker in Quest  on page 339 stated that some testing with hypochlorite was done during the third testing period from July 27 to August 2; however, Gehrmann’s article makes it clear that no hypochlorite was tested during that period.

Gehrmann, “Experiment in Chemical Purification,” 121.

“Water Purification Plant of the Chicago Stock Yards,” 245.

Johnson, “Chicago Stock Yards Water Purification Litigation.”

Johnson, “Sanitary Significance Common Constituents,” 67.

September 3, 1892: First Shovel of Dirt in Construction of the Chicago Sanitary and Ship Canal. “The Sanitary and Ship Canal ran from the South Branch of the Chicago River at Robey Street (now Damen Avenue) to Lockport, a distance of 28 miles in 1900. The channel had a navigable depth of more than 20 feet; its width varied between 110 and 201 feet. Construction on this section, begun in 1892, took eight years to complete and was divided into three sections: an earth section from Robey Street to Summit; an earth and rock section between Summit and Willow Springs; and a rock section from Willow Springs to Lockport. In 1900, the canal ended at a dam in Lockport, which allowed for water to flow southward but precluded navigation. Between 1903 and 1907, the canal was extended to Joliet. A navigation lock and a powerhouse respectively overcame the navigational obstacles and exploited the water power possibilities, of a 34 foot drop between Lockport and Joliet.

President [of the company] Frank Wenter scooping the first shovelful of earth from the Sanitary and Ship Canal on September 3, 1892. More than a thousand dignitaries traveled on a train, specially decorated for the occasion, to Lemont for the ceremony. The public rhetoric was effusive; the Chicago Tribune compared the moment to driving the golden spike that completed the transcontinental railroad in 1869.”

Commentary: Even though these two events happened 16 years apart, it showed how important Chicago was in the water picture of the U.S. at the turn of the 20th century.

Shovel Day Chicago Sanitary and Ship Canal

Shovel Day Chicago Sanitary and Ship Canal

August 13, 1865: Death of Ignaz Philipp Semmelweis

0320 Ignaz SemmelweisAugust 13, 1865: Death of Ignaz Philipp Semmelweis. Semmelweis is credited with recognizing the high death toll among women during childbirth caused by physicians using unsanitary procedures. He instituted the disinfection of physicians’ hands with a concentrated chlorine solution and the death rate of new mothers plummeted. His research and practical applications assisted later proponents of the germ theory of disease and also indirectly contributed to the use of chlorine for disinfection of drinking water.

Ignaz Philipp Semmelweis (July 1, 1818 – August 13, 1865) (born Ignác Fülöp Semmelweis) was a Hungarian physician now known as an early pioneer of antiseptic procedures. Described as the “savior of mothers”, Semmelweis discovered that the incidence of puerperal fever could be drastically cut by the use of hand disinfection in obstetrical clinics. Puerperal fever was common in mid-19th-century hospitals and often fatal, with mortality at 10%–35%. Semmelweis postulated the theory of washing with chlorinated lime solutions in 1847 while working in Vienna General Hospital’s First Obstetrical Clinic, where doctors’ wards had three times the mortality of midwives’ wards. He published a book of his findings in Etiology, Concept and Prophylaxis of Childbed Fever.

Despite various publications of results where hand-washing reduced mortality to below 1%, Semmelweis’s observations conflicted with the established scientific and medical opinions of the time and his ideas were rejected by the medical community. Some doctors were offended at the suggestion that they should wash their hands and Semmelweis could offer no acceptable scientific explanation for his findings. Semmelweis’s practice earned widespread acceptance only years after his death, when Louis Pasteur confirmed the germ theory and Joseph Lister, acting on the French microbiologist’s research, practiced and operated, using hygienic methods, with great success. In 1865, Semmelweis was committed to an asylum, where he died at age 47 after being beaten by the guards, only 14 days after he was committed.”

Reference: Semmelweis, Ignaz. The Etiology, Concept, and Prophylaxis of Childbed Fever. Translated by K. Codell Carter. Madison:University of Wisconsin. 1983.

August 10, 1916: Sterilizing Water and Flushing Mains

0810 4 Sterilizing Water and Flushing Mains-40810 3 Sterilizing Water and Flushing Mains-30810 2 Sterilizing Water and Flushing Mains-20810 1 Sterilizing Water and Flushing MainsAugust 10, 1916: Municipal Journal article. Sterilizing Water and Cleaning Mains. “In connection with the information concerning their water works furnished by more than six hundred officials and published in our June 1st issue, these officials also answered the questions: “Is the capacity of your mains diminished by corrosion?” “Do you clean them?” “If so. how and how often?” “Do you sterilize the water?” “If so, by what process?” Their answers are given in the table on the following pages.

These answers are given as furnished, and no attempt made to change them with a view to uniformity. For instance, some report sterilizing by “liquid chlorine,” others by “chlorine gas,” and some by “chlorine”; but we suppose that all refer to the same treatment. Also “hypochlorite,” “chloride of lime” and “bleach,” all probably refer to the same material.

In the answers concerning cleaning mains, quite a number report doing this by flushing or blowing out. This is generally believed to remove only sediment deposited in the mains, mostly that brought into them by the water, and to have no effect upon tuberculation or corrosion. A few, however, report “cleaning,” which refers in probably all cases to the actual removal by some application of force of tuberculation or other incrustation on the pipes.

It is interesting to note that, of the cities reporting, 96 employ some sterilizing agent, 53 of these using liquid chlorine, which is the latest form of applying chlorine for sterilizing purposes but from these figures appears to have become undoubtedly the most popular. The use of liquid chlorine or hypochlorite is reported from 33 states scattered over the entire country; and it is known that several cities use one or the other which failed to report it, some probably because of local popular prejudice against putting “chemicals” in the water supply.”

Commentary: Disinfection information in this article is fascinating on several levels. First, we see details of which cities were actually disinfecting their water supplies (and those that were not). We also read that there was STILL a fear of chemicals in drinking water even after the overwhelming evidence that typhoid fever and diarrheal diseases could be stopped by such a practice. Finally, this survey documents the conversion from chloride of lime to the use of liquid chlorine that was occurring during this period of water treatment history. Chloride of lime was first used on the Jersey City water supply, which started the disinfection craze (see my book, The Chlorine Revolution). However, the availability of liquid chlorine in pressurized cylinders and the ease of its application ultimately converted everyone to this newer technology.