Tag Archives: chloride of lime

March 24, 1909: Disinfecting Water at Poughkeepsie, NY

0324 Disinfecting at PoughkeepsieMarch 24, 1909: Municipal Journal and Engineer article. Disinfecting Water at Poughkeepsie. “Sedimentation is ineffective because there is nothing to be precipitated, coagulation is ineffective because there is nothing for the coagulant to attack, the efficiency of the filters is not as good at this season of the year, so disinfection is being tried. So far the results have been marvelous.

By the simple adding of the disinfectant (chloride of lime) to the raw water, as if by magic the purification is complete. The hypochlorite is added in the pump and the water then passes through the sedimentation basin. The last bacteriological result shows a reduction from 17,500 to 100. The filters continue to assist in the purification, but there is no necessity for careful regulation.

At present we are adding the disinfectant at the rate of one-half part of free chlorine per million, which figures about 36 pounds of hypochlorite per day for our consumption. There is absolutely no taste or trace of the chlorine in the filtered water, the process is simple, safe and complete. The expense at our present rate is 75 cents per day, where it has been as high as $10 for alum.

The suggestion that this disinfectant method be followed came to us from Mr. George C. Whipple, of New York City. The accompanying cut shows the general layout of the purification plant. The water takes the following procedure: It is pumped from the river into the inlet end of the sedimentation basin, a total lift of about 50 feet; the water then passes through the basin and out at the outlet end, thence by pipe line into the intermediate basin from which it is distributed to each one of the filters. From the filters the water passes to the clear water well and thence back to the station, where another set of pumps sends it to the College Hill distributing reservoir.

The disinfectant is being added from the coagulant basin, which is situated between the laboratory and station, inasmuch as the coagulant use has ceased until more turbid water arrives. Then the alum will be used in small quantities and the disinfectant added at the inlet end of the sedimentation basin.”

Reference: Harding, Robert J. 1909. “Disinfecting Water at Poughkeepsie.” Municipal Journal and Engineer. 26:12(March 24, 1909): 484.

Commentary: Chlorination began on March 17, 1909, as noted in a post on this blog. Poughkeepsie was the third documented use of chlorine for drinking water disinfection in the U.S. as noted in the book The Chlorine Revolution: Water Disinfection and the Fight to Save Lives.

 

March 21, 1912: Philadelphia Filters Overtaxed

Plan of Belmont Filter Plant 1903; phillyh2o.org

Plan of Belmont Filter Plant 1903; phillyh2o.org

March 21, 1912: Municipal Journal article. Unusual Conditions Overtax Filtration Plant. “Philadelphia, Pa.-Conditions of the water supply continue such that Director Neff persists in his warning that householders should continue to boil water for at least two weeks. This applies particularly to West Philadelphia, where the raw supply from the Schuylkill river went to the Belmont [slow sand] filter beds in such condition that the filters were incapable of extracting the bacteria as completely as would be possible under conditions that are normal. The recent heavy rains which scoured the hills and streams of the accumulation of all substances during the winter and sent it down the Schuylkill, produced such a condition as the city has not had to contend with since scientific treatment of the water supply was undertaken. While the water is clearing the danger will not have entirely passed for two weeks. The question of the use of chemicals in the West Philadelphia supply has been taken up. For two years chloride of lime has been utilized in the treatment of the supply filtered by the Torresdale plant, as a safeguard in destroying the bacteria. The advisability of providing some additional safeguard under such unusual emergencies as the present, when the water supplies of many cities are in practically the same condition as that of this city is now engaging the attention of Directors Neff, of Health and Charities, Cooke, of Public Works, and Chief Dunlap, of the Water Bureau.”

References: “Unusual Conditions Overtax Filtration Plant.” 1912. Municipal Journal article 32:12(March 21, 1912): 452.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Commentary: Boil water order for two weeks? Even after more than three years since the first introduction of chlorine into the Jersey City water supply, many cities were still reluctant to adopt the new technology wholesale. It was incidents such as the one described in the article, which led to better designs of filter plants (mechanical filtration) and universal application of chlorination.

Manual Cleaning of Belmont Slow Sand Filter Beds, 1905; phillyh2o.org

Manual Cleaning of Belmont Slow Sand Filter Beds, 1905; phillyh2o.org

March 20, 1847: Ignaz Semmelweis Takes on Childbirth Fever

0320 Ignaz SemmelweisMarch 20, 1847: First official day that Ignaz Philipp Semmelweis assumed his position as assistant physician in the maternity clinic in Vienna, Austria. Semmelweis is credited with recognizing the high death toll among women during childbirth caused by physicians using unsanitary procedures. He instituted the disinfection of physicians’ hands with a concentrated chlorine solution and the death rate of new mothers plummeted. His research and practical applications assisted later proponents of the germ theory of disease and also indirectly contributed to the use of chlorine for disinfection of drinking water.

Ignaz Philipp Semmelweis (July 1, 1818 – August 13, 1865) (born Ignác Fülöp Semmelweis) was a Hungarian physician now known as an early pioneer of antiseptic procedures. Described as the “savior of mothers”, Semmelweis discovered that the incidence of puerperal fever could be drastically cut by the use of hand disinfection in obstetrical clinics. Puerperal fever was common in mid-19th-century hospitals and often fatal, with mortality at 10%–35%. Semmelweis postulated the theory of washing with chlorinated lime solutions in 1847 while working in Vienna General Hospital’s First Obstetrical Clinic, where doctors’ wards had three times the mortality of midwives’ wards. He published a book of his findings in Etiology, Concept and Prophylaxis of Childbed Fever.

Despite various publications of results where hand-washing reduced mortality to below 1%, Semmelweis’s observations conflicted with the established scientific and medical opinions of the time and his ideas were rejected by the medical community. Some doctors were offended at the suggestion that they should wash their hands and Semmelweis could offer no acceptable scientific explanation for his findings. Semmelweis’s practice earned widespread acceptance only years after his death, when Louis Pasteur confirmed the germ theory and Joseph Lister, acting on the French microbiologist’s research, practiced and operated, using hygienic methods, with great success. In 1865, Semmelweis was committed to an asylum, where he died at age 47 after being beaten by the guards, only 14 days after he was committed.”

Reference: Semmelweis, Ignaz. The Etiology, Concept, and Prophylaxis of Childbed Fever. Translated by K. Codell Carter. Madison:University of Wisconsin. 1983.

March 17, 1909: Chlorination at Poughkeepsie, NY

George C. Whipple

George C. Whipple

March 17, 1909: Drinking water chlorination begun at Poughkeepsie, New York. Chlorine was tested at the Poughkeepsie, New York filter plant in early February 1909 but the application of chlorine on a permanent basis at Poughkeepsie did not begin until March 17, 1909. Therefore, the Poughkeepsie water supply was the third example of chlorine disinfection in the U.S. and the first time that chlorine was used as an adjunct to slow sand filtration. George C. Whipple suggested the third application of chlorine to a water supply in a report to the City. As noted in The Chlorine Revolution: Water Disinfection and the Fight to Save Lives, Whipple was on the opposite side from Dr. John L. Leal in the two Jersey City trials. Poughkeepsie, NY is a medium-sized city that is located on the Hudson River about 70 miles north of New York City.

Whipple recommended that the coagulant preceding the slow sand filter at Poughkeepsie be replaced with chloride of lime, which began as a test on February 1, 1909. On March 17, 1909, continuous chlorination was begun using a permanent chemical feeding apparatus.

 

March 16, 1802: Corps of Engineers Established; 1804: Birth of Chester Averill

0316 Corps of Engrs Chester AverillMarch 16, 1802: President Jefferson authorized to establish the Corps of Engineers. “The history of United States Army Corps of Engineers can be traced back to 16 June 1775, when the Continental Congress organized an army with a chief engineer and two assistants. Colonel Richard Gridley became General George Washington’s first chief engineer; however, it was not until 1779 that Congress created a separate Corps of Engineers. One of its first tasks was to build fortifications near Boston at Bunker Hill. The first Corps was mostly composed of French subjects, who had been hired by General Washington from the service of Louis XVI.

The Corps of Engineers as it is known today came into being on 16 March 1802, when President Thomas Jefferson was authorized to ‘organize and establish a Corps of Engineers … that the said Corps … shall be stationed at West Point in the State of New York and shall constitute a Military Academy.’ Until 1866, the superintendent of the United States Military Academy was always an engineer officer. During the first half of the 19th century, West Point was the major and, for a while, the only engineering school in the country. The Corps’s authority over river works in the United States began with its fortification of New Orleans after the War of 1812.”

Chester Averill

Chester Averill

March 16, 1804: Birth of Chester Averill who became a Professor of Chemistry at Union College in Schenectady, New York. Averill is known for a letter that he wrote to the Mayor of Schenectady, New York during the 1832 cholera epidemic which praised the disinfecting properties of chloride of lime (chlorine). The treatise quoted many learned men of the time who demonstrated that chloride of lime eliminated the spread of contagious diseases by attacking the miasmas associated with them. The letter also made reference to the destruction of certain “viruses” that may have been responsible for transmission of the diseases.

Commentary: Averill’s letter is an extraordinary document that is worth reading. He was far ahead of his time. Indeed, he preceded Dr. John Snow’s conclusions about cholera transmission (1849) by 17 years.

#TDIWH—February 27, 1913: Croton Chlorination Plant

0227 Croton Cl2 plantcFebruary 27, 1913: Engineering News article. Chlorinating Plants, Croton Water Supply. “Synopsis—Operating results of a temporary plant, which treated with hypochlorite of lime more than 100 billion gallons of Croton water for New York City in 1912, are given. A permanent hypochlorite or chlorinating plant, to treat the flow through both the old and the new Croton aqueducts, is described and fully illustrated. Brief descriptions are given of four other chlorination plants in the Croton drainage area: Three to treat the waters of tributaries of the Croton before it reaches the main supply and one to treat another tributary and a part of the sewage of the village of Brewster, N. Y.”

In June, 1910, I. M. de Varona, chief engineer of the Department of Water Supply, Gas and Electricity of the City of New York, made trials of hypochlorite treatment in connection with the Croton water-supply. The results were so satisfactory that its use has been extended until the city now maintains five of these plants: one on the New Aqueduct at Pocantico, treating the entire supply from the Croton, and the other four upon various tributaries of the reservoirs.

The continuous treatment of the flow of the New Croton Aqueduct was commenced in June, 1911, the plant being located at Shaft No. 9, north of Tarrytown, N. Y., known as the Pocantico plant. It consists of a rough frame building which houses two cement-lined cypress tanks, 12 ft. in diameter and 6 ft. in height, and a constant-level feeding tank with adjustable orifice discharging through a manhole into the crown of the aqueduct. Within the aqueduct, there is suspended a wooden grid to secure a proper mixture of the chlorine solution and the flowing water. The operating floor is just above the solution tanks and in it are two screened mixing pits.

In operation, a drum of lime, weighing about 800 lb., is rolled into position over a pit and the contents washed out into the pit by a hose stream under pressure. Enough ‘bleach’ is dissolved to treat the aqueduct flow for 12 hours. The tank is then filled with water and stirred to assure the thorough absorption of the chlorine. Four men operate the plant, two on the clay shift, making solution, and one on each of the night shifts, maintaining a constant, uniform flow of the solution.

0227 Croton Cl2 plantbExperience has shown the desirable amount of chlorine to be between 0.40 and 0.65 p.p.m. (parts per million). The lower amount is used in warm weather and when Croton Lake is near the high water line. The amount is gradually increased as the storage in Croton Lake drops or the temperature of the water approaches freezing. The amount of ‘bleach’ to be used daily is determined from a chart (Fig. 1), which shows that the daily amount of chemical is about 4000 lb. Where so much chemical is used, the chart shows the economy resulting from varying the charge of ‘bleach’ in accordance with the amount of its available chlorine, as determined by laboratory analysis.”

Reference: Coffin, T.D.L. 1913. “Chlorinating Plants, Croton Water Supply.” Engineering News. 69:9(February 27, 1913): 419-21.

Commentary: New York City began testing chloride of lime to disinfect the Croton water supply shortly after the findings of the special master in the second Jersey City trial which has been described at length in The Chlorine Revolution: Water Disinfection and the Fight to Save Lives.

0227 Croton Cl2 planta

#TDIWH—February 4, 1909: Second Use of Chlorine in the U.S.; 1877: Birth of C.E.A. Winslow

Little Falls Water Treatment Plant

Little Falls Water Treatment Plant

February 4, 1909: Dr. John L. Leal testified at the second Jersey City trial about the first use of chlorine for continuous disinfection of a U.S. water supply at Boonton Reservoir, which was the water supply for Jersey City, New Jersey. The transcript from February 5, 1909, revealed that Leal had also installed a chloride of lime feed system at the filtration plant at Little Falls, New Jersey. He stated that he had experimented with chloride of lime addition some months before and that he was now using it daily. Thus, the trial transcript provides the first written evidence of the second continuous use of chlorine to disinfect a drinking water supply. This was also the first time chlorine was used in conjunction with mechanical filtration.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

0108 CEA WinslowFebruary 4, 1877: Charles-Edward A. Winslow is born. “Charles-Edward Amory Winslow (4 February 1877 – 8 January 1957) was an American bacteriologist and public health expert who was, according to the Encyclopedia of Public Health, “a seminal figure in public health, not only in his own country, the United States, but in the wider Western world.”

Winslow was born in Boston, Massachusetts and attended Massachusetts Institute of Technology (M.I.T.), obtaining a B.S. in 1898 and an M.S. in 1910.

He began his career as a bacteriologist. He met Anne Fuller Rogers when they were students in William T. Sedgwick’s laboratory at M.I.T., and married her in 1907. He taught at the Massachusetts Institute of Technology while heading the sewage experiment station from 1908 to 1910, then taught at the College of the City of New York from 1910 to 1914.

He was the youngest charter member of the Society of American Bacteriologists when that organization was founded in 1899. With Samuel Cate Prescott he published the first American textbook on the elements of water bacteriology.

In 1915 he founded the Yale Department of Public Health within the Yale Medical School, and he was professor and chairman of the Department until he retired in 1945. (The Department became the Yale School of Public Health after accreditation was introduced in 1947.) During a time dominated by discoveries in bacteriology, he emphasized a broader perspective on causation, adopting a more holistic perspective. The department under his direction was a catalyst for health reform in Connecticut. He was the first director of Yale’s J.B. Pierce Laboratory, serving from 1932 to 1957. Winslow was also instrumental in founding the Yale School of Nursing.

He was the first Editor-in-Chief of the Journal of Bacteriology, serving in that position from 1916 to 1944. He was also editor of the American Journal of Public Health from 1944 to 1954. He was curator of public health at the American Museum of Natural History from 1910 to 1922. In 1926 he became president of the American Public Health Association, and in the 1950s was a consultant to the World Health Organization.”