Tag Archives: filtration

August 29, 1924: Richmond, Virginia Filter Plant Completed

1924 Richmond, Virginia grocery store

August 29, 1924: A complete filtration plant is finally built in Richmond, Virginia. Albert Stein built the first effort to filter a drinking water supply in the U.S. in Richmond in 1832. However the filtration plant was not successful and it was abandoned in 1835. Other efforts were made over the years to treat the Richmond water supply.

“Although Richmond did nothing effective to improve its water supply until well into the twentieth century, settling basins were proposed from time to time. In 1860, the city council asked the superintendent, Davis, and its city engineer, W. Gill, to make plans for a new reservoir “with a proper filter.” They proposed filters cleaned by reverse flow. A new reservoir was put in use January I, 1876. Later, under Superintendent Charles E. Bolling, and the health officer, two narrow settling basins, about a mile long, with provision for drawing off the sediment alternately, were provided. On December 22, 1909, large coagulation basins were added. Chlorination with hypochlorite was begun June 26, 1913, on Levy’s recommendation, following a few cases of typhoid fever in Richmond. In 1914, apparatus for applying liquid chlorine was installed. But not until August 29, 1924, was a complete purification plant available, with coagulation basins, mechanical filters, aerators and a clear-water basin, for the whole of 30-mgd capacity.”

Reference: Baker, Moses N. 1981. The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver, Co.: American Water Works Association, 130-1.

Advertisements

August 28, 1869: Birth of Allen Hazen; 1882: Death of John Rose Leal

August 28, 1869: Birth of Allen Hazen. “Allen Hazen (1869–1930) was an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930 and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works on sedimentation and filtration. He was President of the New England Water Works Association and Vice President of the American Society of Civil Engineers.

During a year spent at MIT (1887-8), Hazen studied chemistry and came into contact with Professor William T. Sedgwick, Dr. Thomas M. Drown and fellow students George W. Fuller and George C. Whipple. As a direct result of his association with Dr. Thomas M. Drown, Hazen was offered his first job at the Lawrence Experiment Station in Lawrence, Massachusetts. LES was likely the first institute in the world devoted solely to investigations of water purification and sewage treatment. From 1888 to 1893, Hazen headed the research team at this innovative research institute into water purification and sewage treatment.

Hazen is most widely known for developing in 1902 with Gardner S. Williams the Hazen-Williams equation which described the flow of water in pipelines. In 1905, the two engineers published an influential book, which contained solutions to the Hazen-Williams equation for pipes of widely varying diameters. The equation uses an empirically derived constant for the “roughness” of the pipe walls which became known as the Hazen-Williams coefficient.

In 1908, Hazen was appointed by President Theodore Roosevelt to a panel of expert engineers to inspect the construction progress on the Panama Canal with President-Elect William H. Taft. Hazen specifically reported on the soundness of the Gatun Dam (an integral structure in the canal system), which he said was constructed of the proper materials and not in any danger of failure.

Hazen’s early work at the Lawrence Experiment Station established some of the basic parameters for the design of slow sand filters. One of his greatest contributions to filtration technology was the derivation of two terms for describing the size distribution of filter media: effective size and uniformity coefficient. These two parameters are used today to specify the size of filter materials for water purification applications. His first book, The Filtration of Public Water Supplies, which was published in 1895, is still considered a classic.

His first assignment as a sole practitioner in 1897 was the design of the filtration plant at Albany, New York. The plant was the first continuously operated slow sand filter plant in the U.S.

One of his early assignments was as consultant to Pittsburgh, Pennsylvania, to determine the best method of providing a safe water supply from the Monongahela River. For decades, the City had been wracked with typhoid fever epidemics. At the time, mechanical filtration (or rapid sand filtration was just beginning to be understood as a treatment process. As a conservative engineer, Hazen recommended that the City install slow sand filters to remove both turbidity and harmful bacteria from its water supply. As early as 1904, Hazen recommended the filtration of the Croton water supply for New York City. As of 2013, a new filtration plant on that water supply is nearing completion.

Hazen received honorary degrees of Doctor of Science from both New Hampshire College of Agriculture and Mechanical Arts (1913) and Dartmouth College (1917). In 1915, he received the Norman Medal which is the highest honor given by the American Society of Civil Engineers for a technical paper that “makes a definitive contribution to engineering science.” He was selected as an Honorary Member of the American Water Works Association in 1930. In 1971, he was inducted into the AWWA Water Industry Hall of Fame with his friend and colleague, George W. Fuller.”

Commentary: This entry is part of the biographical entry for Hazen in Wikipedia that I wrote in June 2012. I did not know much about him until I wrote the article. He was truly an amazing engineer who excelled at everything that he was engaged in.

August 28, 1882: Death of John Rose Leal. John Rose Leal was born on October 20, 1823 (or possibly 1825 or 1827) in Meredith, Delaware County, New York. His parents were John Leal and Martha McLaury who were descended from early settlers of Delaware County, New York. There are records that John Rose Leal’s great-grandfather Alexander Leal was born in Scotland in 1740 and immigrated to the British colonies in North America, landing in New York City on April 13, 1774. On John R. Leal’s mother’s side, his ancestors came from Ireland and Scotland.

There is little information on John R. Leal’s early years. According to one source, he received his preliminary education at the Literary Institute, in Franklyn, Delaware County, New York and at the Delaware Academy in Delhi, New York.

John Rose Leal received his medical training under Dr. Almiran Fitch of Delhi, New York and completed his medical degree at Berkshire Medical College. Located in the westernmost regions of Massachusetts, Berkshire County, the medical college was in a remote part of the young country separated from the rest of the state by the Berkshire Mountains. The mission of Berkshire Medical College was to train doctors to serve the sparsely populated rural areas that were dominated by agriculture. Founded in 1822 as the Berkshire Medical Institution, the school had to overcome resistance from Harvard Medical School that objected to the establishment of another medical training facility in Massachusetts. With a student population of about 30 in the 1840s, a medical education was offered to students for the magnificent sum of $140 per year.

John Rose Leal received his medical degree in 1848 and shortly thereafter opened up a medical practice in Andes. Dr. Leal continued his education with a post-graduate course at the Columbia College of Physicians and Surgeons in New York City—an institution that would figure prominently in one son’s education.

There is a limited amount information about his wife, Mary Elizabeth Laing, from historical records. Born in 1837, the fourth child of eight children, she was the daughter of Rev. James Laing of Andes, NY. She was born in Andes, NY, after the family moved there from Argyle, NY. Her father was the pastor of the Presbyterian Church of Andes.

John Rose Leal and Mary E. Laing were married in Andes on August 29, 1855. Mary E. Laing was only 18 when she married the successful country doctor. John L. Leal was born to the couple on May 5, 1868. Census records from 1860 show that another child was born to the couple about 1859 in Andes, William G. Leal. Another brother was born much later in Paterson, New Jersey, about 1870, Charles E. Leal. There are no records showing that William G. Leal survived into adulthood. Charles E. Leal lived to the age of 24 and died in 1894 in Paterson.

The simple rural life in Andes, New York was shattered by the Civil War in 1862 when the 144th Regiment, New York Volunteers was formed in Delaware County and the surrounding area. John R. Leal’s first appointment was as regimental surgeon and over the next three years he was promoted to surgeon at the brigade, division and corps levels. Toward the end of the war he held the title of Medical Director in the Department of the South. According to an obituary, Dr. Leal was wounded twice and was with his regiment at the battle of John’s Island.

The 144th Regiment was stationed on Folly Island in 1863 as part of the siege of Charleston, South Carolina. According to the history of the regiment, “very nearly every man in the Regiment got sick…with bad and unhealthy water to drink.” The only treatment at the time for the debilitating dysentery that overwhelmed the Regiment was the administration of “opium pills” by Dr. Leal. The pills did not cure anything but they made the recipients feel somewhat better. Dr. Leal became so ill that he received medical leave for a time, but it is clear from the records that he never fully recovered.

Dr. Leal was mustered out of the 144th Regiment on June 25, 1865 after which time he returned to his simpler life in Andes, New York. However, he brought a dreadful souvenir of the war home with him and he suffered with it for the next 17 years.

In one obituary, it was stated: “…his death, which resulted from an attack of peritonitis of an asthenic character, sequel to an attack of dysentery, which at the outset did not indicate an unusual degree of severity, but was undoubtedly aggravated by the chronic diarrhea from which he had been a sufferer more or less constantly since his retirement from the army.”

Another obituary was equally clear as to the cause of his death: “He never recovered from the effects of disease contracted on Folly Island, and this induced other complications, resulting in his death.”

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Commentary: Dr. John Rose Leal was the father of Dr. John L. Leal who was responsible for the first chlorination of a U.S. public water supply—see The Chlorine Revolution.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

August 23, 1911: Chicago Water Tanks

August 23, 1911: Municipal Journal article. Water Tanks Cause of Impure Water “Chicago, Ill.-Flat dwellers who patronize Lake Michigan for drinking purposes can get a certificate of quality from the City Health Department. Health Commissioner Young declared that any samples brought to the department drawn from faucets in apartment houses will be tested, and if found to be impure orders will be given to the owners of the buildings to cleanse the tanks on the roofs from which the supply is drawn. Much of the danger from drinking water comes from the neglect of the owners of apartment houses to keep these tanks properly cleaned. The regulations of the Health Department require that these tanks be covered and sufficiently protected to keep cats or other animals from wandering into them. In many of them, however, moss and other vegetable matter accumulates. In practically all buildings more than two stories in height tanks are necessary in order to supply water to the upper floors.”

Commentary: In Chicago during this period, algae growing in elevated water tanks was the least of a resident’s problems. It was not until the year of this article (1911) that Chicago began installing chlorination stations on the pumping facilities from Lake Michigan. Prior to this, death from severe typhoid fever epidemics killed many tens of thousands over the decades of the city serving contaminated water. Filtration was not installed until 1947.

July 26, 1930: Allen Hazen Dies

July 26, 1930: Death of Allen Hazen. “Allen Hazen (1869–1930) was an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930 and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works on sedimentation and filtration. He was President of the New England Water Works Association and Vice President of the American Society of Civil Engineers.

During a year spent at MIT (1887-8), Hazen studied chemistry and came into contact with Professor William T. Sedgwick, Dr. Thomas M. Drown and fellow students George W. Fuller and George C. Whipple. As a direct result of his association with Dr. Thomas M. Drown, Hazen was offered his first job at the Lawrence Experiment Station in Lawrence, Massachusetts. LES was likely the first institute in the world devoted solely to investigations of water purification and sewage treatment. From 1888 to 1893, Hazen headed the research team at this innovative research institute into water purification and sewage treatment.

Hazen is most widely known for developing in 1902 with Gardner S. Williams the Hazen-Williams equation which described the flow of water in pipelines. In 1905, the two engineers published an influential book, which contained solutions to the Hazen-Williams equation for pipes of widely varying diameters. The equation uses an empirically derived constant for the “roughness” of the pipe walls which became known as the Hazen-Williams coefficient.

In 1908, Hazen was appointed by President Theodore Roosevelt to a panel of expert engineers to inspect the construction progress on the Panama Canal with President-Elect William H. Taft. Hazen specifically reported on the soundness of the Gatun Dam (an integral structure in the canal system), which he said was constructed of the proper materials and not in any danger of failure.

Hazen’s early work at the Lawrence Experiment Station established some of the basic parameters for the design of slow sand filters. One of his greatest contributions to filtration technology was the derivation of two terms for describing the size distribution of filter media: effective size and uniformity coefficient. These two parameters are used today to specify the size of filter materials for water purification applications. His first book, The Filtration of Public Water Supplies, which was published in 1895, is still considered a classic.

His first assignment as a sole practitioner in 1897 was the design of the filtration plant at Albany, New York. The plant was the first continuously operated slow sand filter plant in the U.S.

One of his early assignments was as consultant to Pittsburgh, Pennsylvania, to determine the best method of providing a safe water supply from the Monongahela River. For decades, the City had been wracked with typhoid fever epidemics. At the time, mechanical filtration (or rapid sand filtration was just beginning to be understood as a treatment process. As a conservative engineer, Hazen recommended that the City install slow sand filters to remove both turbidity and harmful bacteria from its water supply. As early as 1904, Hazen recommended the filtration of the Croton water supply for New York City. As of 2013, a new filtration plant on that water supply is nearing completion.

Hazen received honorary degrees of Doctor of Science from both New Hampshire College of Agriculture and Mechanical Arts (1913) and Dartmouth College (1917). In 1915, he received the Norman Medal which is the highest honor given by the American Society of Civil Engineers for a technical paper that “makes a definitive contribution to engineering science.” He was selected as an Honorary Member of the American Water Works Association in 1930. In 1971, he was inducted into the AWWA Water Industry Hall of Fame with his friend and colleague, George W. Fuller.”

Commentary: This entry is part of the biographical entry for Hazen in Wikipedia that I wrote in June 2012. I did not know much about him until I wrote the article. He was truly an amazing engineer who excelled at everything that he was engaged in.

July 25, 1698: Thomas Savery Gets Patent for Steam Pump; 1799: Birth of James Simpson

Thomas Savery

July 25, 1698: “Thomas Savery received a British patent for a “New Invention for Raiseing of Water and Occassioning Motion to all sorts of Mill Work by the Impellent Force of Fire”; first application of steam for pumping water, intended for draining mines, serving towns and supplying water to mills; design had major problems containing high-pressure steam due to the weakness of available construction materials.”

James Simpson

July 25, 1799: James Simpson born. Simpson is one of the best-known filtration pioneers. He developed, built and put into operation the first slow sand filter in England. The filter was part of the Chelsea Water Works Co. which served part of London.

Reference: Baker, Moses N. 1981. The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver, Co.: American Water Works Association, 99.

 

July 23, 1800: French Water Filter Patent Issued

Notre Dame de Paris on the Seine River

July 23, 1800: French patent granted to James Smith, ‘Citizen’ Ciuchet and Denis Monfort for an elaborate filtration device consisting of layers of wool, 2 inches crushed sandstone, 12 inches coarse powdered charcoal pressed into a solid with river sand, and 12 inches of sand or crushed sandstone.

“In 1800, the basic Smith-Cuchet-Montfort patent was granted by France and, in 1806, the Quai des Celestins filters, which operated for a half century or more, were established in Paris. James Smith, a gunsmith from Glasgow, for a short time helped Richard Younger of Edinburgh, formerly a brewer, to assemble filters, the manufacture of which Younger began in or about 1795. These filters, wrote John Wilson, in 1802, were the most remarkable of the devices proposed up to that time to purify water by the use of charcoal, in accordance with the proposals of Lowitz (see Chap. 111) and others.

Smith, having brought the Lowitz process to the attention of the French Minister of Marine “as an important secret,” says Rochon, was sent to Brest. Numberless experiments were made there in the presence of twelve representatives of different branches of the Marine Department. An official report on the experiments was made in 1798. Smith went to Paris and, with others, took out a filter patent.”

Reference: ‘Baker, Moses N. 1981. The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver, Co.: American Water Works Association, 38-9.

July 21, 1909: Filters for Providence, RI

July 21, 1909: Municipal Journal and Engineer article. Water Filters of Providence, R.I. “Final construction is just about being completed on the ten filter beds which constitute the plant designed some years ago for the purification of the water supply of Providence, R.I. The first contract was dated July 15, 1902, and called for six slow sand filters each approximately one acre in effective area; a regulating house containing the measuring and controlling apparatus; a pumping station, and a laboratory building. When the plans for these filters were under consideration the subject of covering the beds was considered at some length. In view of the fact that at Lawrence, Mass., 50 miles further north, little trouble had been experienced with snow and ice or with any serious interruption of bacterial efficiency on account of cold, and inasmuch as a considerable saving in cost could he made by omitting the covers the Commissioner of Public Works decided to adopt open filter beds.

Part of the first six beds was put in operation in the summer of 1904 and a second contract was let on February 13, 1905 calling for another regulating house and two additional beds. The winter of 1905-06 was particularly severe in New England and the formation of ice on the water over the filter beds then in service made the cleaning of them very difficult and at times almost impossible. Ice fourteen inches thick formed over the filters, and not only the full force of water works employees but a number from the sewer department also were utilized, the force at times reaching 150 men; but even with these it was impossible to remove the ice as fast as it formed. In consequence the beds had to be operated with much greater loss of head than had been intended. The same difficulty was found in the winter of 1906-07 and at times it was found necessary to draw water directly from the river to supply the demand.

This experience convinced those in charge that it would conduce not only to greater efficiency of filtration in winter time, but to greater economy also, to have the filters covered. Accordingly on June 11, 1906, a contract was let to the Pettaconset Construction Company of Providence, which firm also obtained the two previous contracts for the filters, for placing covers over the beds then under construction, and also over the six already completed; also to construct two more covered beds, making ten beds in all.”

Commentary: Note the highlighted section. If the filters are not used because the cold weather causes the water to freeze, then they are not much good as a barrier to disease. In The Chlorine Revolution, I noted that the typhoid fever rate was not much reduced after slow sand filtration was introduced into Lawrence, MA. Perhaps they were drawing raw water out of the Merrimac River during the winter and not telling anyone.