Tag Archives: filtration

April 21, 1859: First London Drinking Fountain; 2012: Kirkwood Memorial Dedicated

April 21, 1859:  London’s Oldest Drinking Fountain. “A rather humble looking fountain set into the railing outside the Church of St Sepulchre-without-Newgate at the corner of Giltspur Street and Holborn Viaduct, it’s easy to overlook this important part of London’s historic fabric.

But this free water fountain is London’s oldest and was installed here on 21st April, 1859, by the then Metropolitan Drinking Fountain Association. Established by Samuel Gurney – an MP and the nephew of social reformer Elizabeth Fry, the organization aimed to provide people with free drinking water in a bid to encourage them to choose water over alcohol.

Within two years of the fountain’s creation, the organization – which later changed its name to Metropolitan Drinking Fountain and Cattle Trough Association in reflection of its expanded role in also helping animals – had placed as many as 85 fountains across London.

Such was the need for a clean water supply that, according to the Drinking Fountain Association, as many as 7,000 people a day used the fountain when it was first installed.

The fountain on Holborn Hill was removed in 1867 when the nearby street Snow Hill was widened during the creation of the Holborn Viaduct and the rails replaced but it was returned there in 1913. Rather a poignant reminder of the days when water wasn’t the publicly available resource it is today, the marble fountain still features two small metal cups attached to chains for the ease of drinking and carries the warning, ‘Replace the Cup!’”

Kirkwood Aqueduct, St. Louis, MO

April 21, 2012:  Memorial to James P. Kirkwooddedicated by the St. Louis Section of the American Society of Civil Engineers. Kirkwood was the civil engineer hired by St. Louis, MO to investigate filtration of their water supply.  He wrote the classic book Report on the Filtration of River Waters, which was the first book in any language to focus on the filtration of municipal water supplies.  The book summarized his investigation covering 1865-69 where he described the filters and filter galleries he visited in 19 European water works.  Kirkwood died on April 22, 1877.


April 2, 1914: Sanitary Survey of Potomac and Miniature Plants by Malcolm Pirnie

Potomac River Watershed

April 2, 1914:  Municipal Journalarticles. Make Survey of Potomac River. “Washington, D. C.-Public health service officials who are aboard the yacht Bratton making a sanitary survey of the Potomac river and Chesapeake bay have, according to report, taken between 1,500 and 2,000 samples of Potomac water for examination and analysis, and it is stated that it will be several weeks before the results of the survey are completed and ready for publication. In connection with the work being done by the Bratton on the navigable portions of the Potomac H. P. Letton of the public health service is at Hagerstown, Md., and is conducting the work of examining the headwaters of the Potomac to ascertain their sanitary condition and the effect the sewage and wastes from the large tanneries and other industries on the upper river are having on the water coming down past this city. It is stated that one of the objects the service has in making this survey is, if possible, to find some use for the various kinds of refuse from the manufacturing plants and to show how they can be turned into a source of profit instead of being allowed to pollute the Potomac water.”

H. Malcolm Pirnie

Demonstrate Filtration Methods By Miniature Plants. “Salem, Mass.-Both the [slow] sand and mechanical methods of filtering water were interestingly demonstrated by Engineer H. M. Pirnie. Two plants in miniature had been constructed which gave Mr. Pirnie an excellent opportunity of showing state and city officials of Salem and Beverly just how each process operates and its relative advantages. The two cities mentioned are soon to use water from the Ipswich River, and the question of efficient filtration has received serious attention.”

Reference:  Municipal Journal. 1914. 36:14(April 2, 1914): 476-7.

Commentary:  By miniature plants, the author was undoubtedly referring to pilot plant studies of the two filtration technologies. H. M. Pirnie was Malcolm Pirnie who worked for the consulting firm of Hazen and Whipple and ultimately founded the firm known as Malcolm Pirnie, Inc.

March 27, 1807: Birth of James P. Kirkwood

March 27, 1807:Birth of James P. Kirkwood who authored the classic book Report on the Filtration of River Waters, which was the first book in any language to focus on the filtration of municipal water supplies. The book summarized his investigation covering 1865-69 where he described the filters and filter galleries he visited in 19 European water works.  On this same date in 1865 (his 58th birthday), Kirkwood was appointed Chief Engineer by the Board of Water Commissioners for the City of St. Louis, MO.

James Pugh Kirkwood(27 March 1807 – 22 April 1877) was a 19th-century American civil engineer. He was born in Edinburgh, Scotland, on 27 March 1807. He worked for the Long Island Rail Road, and gained notice in 1848 for his construction of the Starrucca Viaduct near Lanesboro, Pennsylvania, considered to be the most expensive railroad bridge at the time, as well as the largest stone viaduct, and for its first use of concrete in American bridge construction.

He arrived in St. Louis, Missouri, in 1850 as chief engineer of the Pacific Railroad, and was responsible for the construction of the road from St. Louis to Pacific, Missouri. The towns of Kirkwood, Missouri, and Kirkwood, New York, are named after him. In 1865 he was appointed Chief Engineer of St. Louis, Missouri, in charge of the design of a state-of-the-art waterworks. He served in that capacity until 1867, when he was replaced by Thomas Jefferson Whitman, brother of Walt Whitman.

In 1867 he moved back to New York and served as President of the American Society of Civil Engineers from 1867 to 1868.”

February 21, 1895: Aeration to Purify Sewage and a Letter from George Warren Fuller

Spray Aeration

February 21, 1895:Letter to Engineering News. Aeration as a Means of Purifying Sewage and Water. by J.H. Curtis. “The subject of sewage disposal and the purification of alluvial river water has been long considered and well digested by chemists, but the engineering end of the question has seemed to lag. About a year ago the subject was experimented on at St. Louis, and the result of these experiments may be given as follows:

Aeration was employed in which the liquid to be treated is absolutely disintegrated or reduced to spray. At the same instant of time and in juxtaposition with the liquid spray must be an atom of disintegrated air. What is the result? Organic matter accompanying the liquid is at once seized by the different constituents of the air, and there is produced pure water and harmless inorganic compounds. How performed? By a screen floor, say, with pepper-box perforations, over which is a layer of coarse river sand, somewhere below another layer of sand, leaving an air chamber between the two. Then, to duplicate nature, cause a rain storm of the liquid to be purified by forcing air into the chamber of a little less pressure than what is sufficient to sustain the weight of the liquid in the tank.

These drops falling on the fine sand, which must be kept unsubmerged, are then and there purified. [Mr. Curtis then goes on to quote the results from some experiments conducted at the Lawrence Experiment Station in Massachusetts. The experiments were run by none other than George Warren Fuller. The article continues…]

At the request of Mr. Curtis we have submitted proofs of his communication to Mr. Geo. W. Fuller, Biologist-in-Charge of the Lawrence Experiment Station of the Massachusetts State Board of Health. Mr. Fuller has made some comments on the subject, which are given immediately below. -Ed.)

Sir: The reference by Mr. Curtis to the Report of the Massachusetts State Board of Health on the purification of sewage by intermittent filtration, where artificial aeration is used for the removal of air in the filters, shows such a complete misapprehension of the process of purification by bacterial action, as well as misconception of the results of our work, that it is difficult to comment on the statements In his letter. He has entirely missed the idea of purification in the series of intermittent sewage filters Nos. 12A, 15B and 16B, which have been described in our Reports for 1892 and 1893.

It seems to me unnecessary to comment on his scheme until he has some facts to give with regard to this bacterial and organic purification of water and sewage by his system.

Truly yours,

George W. Fuller.

Commentary: There are very few letters written by George Warren Fuller that have survived to the present day. It is clear from this letter that he did not suffer fools gladly even at the tender age of 27 when the letter was written.

January 31, 1941: Death of Charles V. Chapin

Charles V. Chapin

January 31, 1941:  Charles V. Chapin dies.“Charles Value Chapin (January 17, 1856 – January 31, 1941 in Providence) was a pioneer in public-health practice, serving as one of the Health Officers for Providence, Rhode Island between 1884 and 1932. He also served as President of the American Public Health Association in 1927. His observations on the nature of the spread of infectious disease were dismissed at first, but eventually gained widespread support. His book, The Sources and Modes of Infection, was frequently read in the United States and Europe. The Providence City Hospital was renamed the Charles V. Chapin Hospital in 1931 to recognize his substantial contributions to improving the sanitary condition of the city of Providence.”

From a draft of The Chlorine Revolution: (McGuire 2013)

In the U.S., Charles V. Chapin was responsible more than any one person for instituting the progressive aspects of the public health movement, but he started his career when miasmas dominated beliefs in disease transmission.  In a paper published in the American Journal of Public Healthin 1909, he recalled his early career and the incredible ideas that were believed at that time.

“The foul emanations from decomposing organic matter were sucked up from cellars by the warm air of the house and carried sickness and death…Air was the chief vehicle of infection, nay, it was infection itself.  The emanations from cellars and untidy cupboards which dealt death and destruction through the house have been referred to, as well as the more specific effluvia which gave rise to yellow fever, consumption, and diphtheria.” (Chapin 1915)

In 1884, the appointment of Charles V. Chapin as Superintendent of Health for the City of Providence, Rhode Island was one of the milestones that can be noted in making boards of health more professional. Much has been written about his career, but it was his assumption of the duties of Superintendent of Health that defined his contribution to public health.  He was trained as a physician but Chapin became instrumental in improving not only medical education but also the education of public health specialists. Chapin is one of the best examples of the new professionals who bridged the period from miasma to germ theory.  He had been trained in the arts of fumigation and cleaning the streets to remove filth.  He was obtaining his medical education just as the age of bacteriology was dawning. He had taken courses in the new bacteriology and had followed the publications of Robert Koch in Germany who had identified the tubercle bacillus and the bacillus comma that caused cholera. In addition, Chapin adopted and used Koch’s new laboratory technique called the plate method to quantify the number of bacteria present in a water supply.

Unlike many health officers who were confused by the seeming conflicts between the worlds of miasmas and germs, Chapin integrated the two and devised a new approach to public health protection. “He was one of a few in America before 1885 who followed the English sanitarian John Simon in pointing out that the danger from filth was not in the stench but in specific disease germs….For many good reasons, the cleansing of the city had to go on.” (Cassedy 1962)


Indeed, the story of the advances in public health during the 1890s and early 1900s could be nothing more than a recitation of Chapin’s biography.  That task has already been brilliantly done by James H. Cassedy in his book about Charles V. Chapin. (Cassedy 1962)

“Chapin’s efforts to improve the sanitary environment of his city were valuable to sanitarians across the country.  But he was impatient with much of this work.  He had early realized that cleansing of the physical environment was, by itself, insufficient for improving the public health. Minimizing the broad dogmas of the filth theory from the first, and concentrating on the truly dangerous forms of filth, Chapin progressively deemphasized nuisances that had no direct or demonstrable connection with disease and avoided much of the tedious routine of nuisance abatement….Attuning himself to the age of bacteriology, he turned from general measures against disease to specific measures against particular diseases.”(Cassedy 1962)

Disinfection of households which held victims of infectious diseases was one of the lingering effects of the miasma theory. In 1902, Leal discussed the useful and ridiculous aspects of disinfection of a diseased household after the removal of the infected person.

“Disinfection, then, is the process of destroying such infection by the destruction of the disease germs there existing…Too often, however, it is intrusted (sic) to one whose training possibly has made capable of distinguishing a pile of filth or an unpleasant odor, but who as no true conception of the cause of the disease, how it is possible to destroy it, and the means to be employed.  In such hands it is more a ceremony of incantation than a scientific process.” (emphasis added) (Leal 1902)

Ceremonies of incantation persisted for decades. Chapin lamented in a paper published in 1923 that cities were loath to give up what he called “terminal disinfection” which referred to the disinfection of surfaces or the atmosphere in a dwelling where a person has died from a contagious disease or had recovered from such a disease.  He emphasized that by the time of his writing, everyone was pretty sure that contagious diseases were spread by people (and their emanations) and not things.  Swabbing a house down with formaldehyde, burning sulfur or heating pans of chloride of lime provided impressive special effects, but were of little use to prevent transmission of epidemic diseases. (Chapin 1923)

Yet, cities felt compelled to continue the tradition because it was ingrained in the public psyche and the public expected it. Providence, Rhode Island stopped terminal disinfection for diphtheria cases in 1905 but it was not until 1908 that Chapin was able to stop terminal disinfection for scarlet fever cases.  In 1913, New York City eliminated virtually all terminal disinfection and many other cities followed suit. (Chapin 1923) Part of the resistance to eliminating terminal disinfection was public relations, but a huge part of the problem was that there was a deeply ingrained belief that if someone was sick, they probably infected the air and the bad air had to be cleansed.

The work on mechanical filtration done in Providence, Rhode Island, over the period 1892 to 1894, seldom gets the credit it deserves for marking advances in the science of drinking water filtration. (Swarts 1895) After an epidemic of typhoid in Providence in 1888, Charles V. Chapin began to seriously investigate filtration for use on the City’s water supply. “This Providence experimentation provided the first careful tests anywhere of the mechanical type of water filtration.” (Cassedy 1962) In a paper published by Chapin, bacteria removals were typically 98.7 percent.  Chapin recommended that mechanical filtration be installed on the source of supply for Providence. (Chapin 1895) However, the City Council was not ready for such a new technology.  A slow sand filter was installed instead. (Cassedy 1962)

Commentary:  I knew nothing about Charles V. Chapin when I started writing The Chlorine Revolution. After seeing his name pop up in many contexts dealing with the new public health movement, I read his autobiography. He was an extraordinary individual who did more than most to modernize public health efforts in the U.S.


Cassedy, James H., Charles V. Chapin and the Public Health Movement. Cambridge: Harvard University Press, 1962.

Chapin, Charles V. 1895. “The Filtration of Water.” The Medical News. 66 (January 5, 1895): 11-4.

Chapin, Charles V. 1915. “Truth in Publicity.” American Journal of Public Health. 5 (June 1915): 493-502, In Papers of Charles V. Chapin, M.D. Clarence L. Scamman ed., New York:Oxford, 1934, 13-9.

Chapin, Charles V. 1923. “Disinfection in American Cities.” TheMedical Officer (London). 30 (November 17, 1923): 232-3, In Papers of Charles V. Chapin, M.D. Clarence L. Scamman ed., New York:Oxford, 1934, 92-5.

Leal, John L. 1902. “Facts vs. Fallacies of Sanitary Science,” Eleventh Biennial Report of the Board of Health of the State of Iowa for the Period Ending June 30, 1901. Des Moines:Iowa, 129-40, from The Christian Advocate. New York, August 21, 1902.

McGuire, Michael J. 2013. The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Swarts, Gardner T. 1895, “Discussion on the Foregoing Group of Papers From ‘The Cart Before the Horse’ to ‘The Report of the Committee on the Pollution of Water Supplies,’ Inclusive.” In American Public Health Association, Public Health Papers and Reports.Vol. 20, Columbus, OH:APHA, 83-4.

Charles V. Chapin

January 20, 1916: Lowell, Mass. Filtration Plant and Watertown, NY Water Supply

January 20, 1916:  Municipal Journalarticle–New Filtration Plant Completed. “Lowell, Mass.-The city’s new $225,000 filtration plant is now in operation. The building is of concrete, with red tile roof, and is artistic in design. The filtration or purification plant is located on the north side of the boulevard, immediately opposite the lower pumping station. It consists of six coke prefilters, 10 feet in depth and two-fifths of an acre in total area; a settling basin, divided into two units, with a total capacity of 500,000 gallons; six sand filters, with a total area of one acre; and a filtered water reservoir of 1,000,000 gallons capacity. All of the operations involved are controlled in the building shown in the accompanying illustration, where are contained the main valves and recording apparatus. At the rate of 75 million gallons per acre per day through the prefilters. and a 10 million gallon rate through the sand filters the areas provided have a capacity of a 10-million gallon daily output. Allowing for cleaning and for the possible desirability of a lower rate through the coke, the plant is believed to be ample for an average daily supply of 7,500,000 to 8,500,000 gallons, or-if the past growth of the population holds in the future-sufficient for the needs of the city until 1935.”

January 20, 1916:  Municipal Journalarticle–Engineers’ Report on Water Supplies. “Watertown, N. Y.-The report of Hazen, Whipple & Fuller, the consulting engineers, who for several months past have been investigating available sources from which Watertown might secure its water supply has been presented to city officials. The report is an exhaustive one and is supplemented by maps of the available areas prepared under the direction of the engineers. Four possible sources aside from the one now used are considered in the report, and, while no recommendations are made, statistics of the cost of the works and cost of maintenance all of which are embodied in the report, show that the possible supply from the north branch of Sandy Creek is the most satisfactory and least expensive. The report shows that the proposed Pine Plains source would not furnish a sufficient supply of water from wells alone. While the city at the present time consumes approximately 6,000.000 gallons of water a day, the commissioners decided before the survey started that no supply would he considered satisfactory unless it would furnish at least 12.000,000 gallons per day. This would assure a supply that could be used without addition for many years to come.”

Reference: “Engineers’ Report on Water Supplies.” 1916.Municipal Journal.40:3(January 20, 1916): 82-3.

January 17, 1896: Drought Cartoon; 1994: Northridge Earthquake Damages Los Angeles Infrastructure; 1900: Missouri v Illinois over Chicago Sewage; 1856: Charles V. Chapin Born; 1859: Death of Lemuel Shattuck

January 17, 1896:  Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

January 17, 1994:  Northridge earthquake does significant damage to water infrastructure in Los Angeles.“The Northridge earthquake was an earthquake that occurred on January 17, 1994, at 04:31 Pacific Standard Time and was centered in the north-central San Fernando Valley region of Los Angeles, California. It had a duration of approximately 10–20 seconds….In addition, earthquake-caused property damage was estimated to be more than $20 billion, making it one of the costliest natural disasters in U.S. history….Numerous fires were also caused by broken gas lines from houses shifting off their foundations or unsecured water heaters tumbling. In the San Fernando Valley, several underground gas and water lines were severed, resulting in some streets experiencing simultaneous fires and floods. Damage to the system resulted in water pressure dropping to zero in some areas; this predictably affected success in fighting subsequent fires. Five days after the earthquake it was estimated that between 40,000 and 60,000 customers were still without public water service.”

Commentary:  One of the most memorable sights from the earthquake aftermath was the massive natural gas fire occurring while water was spewing from a huge water main break (http://www.youtube.com/watch?v=WA1m3UgJ8nU).

Breaking the Dam on the Canal

January 17, 1900:Fifteen days after Chicago opened the Sanitary and Ship Canal and reversed the course of the Chicago River to discharge sewage into the Mississippi River, Missouri sued Illinois, “…praying for an injunction against the defendants from draining into Mississippi River the sewage and drainage of said sanitary district by way of the Chicago drainage canal and the channels of Desplaines and Illinois river.”

The Bill of Complaint alleged in part:

“That if such plan is carried out it will cause such sewage matter to flow into Mississippi River past the homes and waterworks systems of the inhabitants of the complainant…

That the amount of such undefecated [huh?] sewage matter would be about 1,500 tons daily, and that it will poison the waters of the Mississippi and render them unfit for domestic use, amounting to a direct and continuing nuisance that will endanger the health and lives and irreparably injure the business interests of inhabitants of the complainant…

That the water of the canal had destroyed the value of the water of the Mississippi for drinking and domestic purposes, and had caused much sickness to persons living along the banks of said river in the State of Missouri.”

The opinion in the case was written by Supreme Court Justice, Oliver Wendell Holmes and read in part:

“The data upon which an increase in the deaths from typhoid fever in St. Louis is alleged are disputed. The elimination of other causes is denied. The experts differ as to the time and distance within which a stream would purify itself. No case of an epidemic caused by infection at so remote a source is brought forward and the cases which are produced are controverted. The plaintiff obviously must be cautious upon this point, for if this suit should succeed many others would follow, and it not improbably would find itself a defendant to a bill by one or more of the States lower down upon the Mississippi.The distance which the sewage has to travel (357 miles) is not open to debate, but the time of transit to he inferred from experiments with floats is estimated at varying from eight to eighteen and a half days, with forty-eight hours more from intake to distribution, and when corrected by observations of bacteria is greatly prolonged by the defendants. The experiments of the defendants’ experts lead them to the opinion that a typhoid bacillus could not survive the journey, while those on the other side maintain that it might live and keep its power for twenty-five days or more, and arrive at St. Louis. Upon the question at issue, whether the new discharge from Chicago hurts St. Louis, there is a categorical contradiction between the experts on the two sides.”

Commentary:  In effect, Justice Holmes ruled in favor of Chicago. The experts for St. Louis had failed to prove their case.

Reference:  Leighton, Marshall O. 1907. “Pollution of Illinois and Mississippi Rivers by Chicago Sewage: A Digest of the Testimony Taken in the Case of the State of Missouri v. the State of Illinois and the Sanitary District of Chicago.” U.S. Geological Survey, Water Supply and Irrigation Paper No. 194, Series L, Quality of Water, 20, Department of the Interior, Washington, D.C.: U.S. Government Printing Office.

Charles V. Chapin

January 17, 1856:  Charles V. Chapin was born.“Charles Value Chapin (January 17, 1856 – January 31, 1941 in Providence) was a pioneer in public-health practice, serving as one of the Health Officers for Providence, Rhode Island between 1884 and 1932. He also served as President of the American Public Health Association in 1927. His observations on the nature of the spread of infectious disease were dismissed at first, but eventually gained widespread support. His book, The Sources and Modes of Infection, was frequently read in the United States and Europe. The Providence City Hospital was renamed the Charles V. Chapin Hospital in 1931 to recognize his substantial contributions to improving the sanitary condition of the city of Providence.”

Commentary:  Chapin defined the new public health movement at the beginning of the 20thcentury. His career expressed the advances in public health that we all now take for granted.

January 17, 1859:  Lemuel Shattuck died in Boston.“Lemuel Shattuck was born on October 15, 1793 in Ashby, Massachusetts… He is remembered as a public health innovator, and for his work with vital statistics. Shattuck was one of the early prime-movers of public hygiene in the United States. With his report to the Massachusetts Sanitary Commission in 1850, he accomplished for New England what such men as Chadwick, Rarr, and Simon had done for England. There had been in the United States few advances in public health aside from a few stray smallpox regulations until this report. Shattuck’s report pointed out that much of the ill health and debility in the American cities at that time could be traced to unsanitary conditions, and stressed the need for local investigations and control of defects.

Shattuck was a prime mover in the adoption and expansion of public health measures at local and state levels. In 1850, he published a Sanitation Report that established a model for state boards of health in Massachusetts (1869) and other parts of the United States….”