Tag Archives: groundwater

April 14, 1909: Champaign Urbana Water Works

April 14, 1909: Municipal Journal and Engineer article. Champaign Urbana Water Works. “Underground Supply-Wells Pumped by Steam, Electric and Belt-Driven Pumps-Iron Removal by Aeration-Most Services Metered. The Champaign and Urbana Water Company, of which Mr. F. C. Amsbury is superintendent, supplies two Illinois cities from which it gets its name. These have a total combined population of 23,000 or 24,000, and form practically one community. An underground source of supply is tapped by twelve eight-inch wells about 16o feet deep. Each of these wells has its own separate direct-acting pumping head. Both Downey and Luitwieler pumps are used, with long rods extending to valves at the bottom of the wells. A few of the pumps are single-acting, but most are double-acting.

Four of the wells are located along one side of the main pumping station. The pumps in these are connected by belts, running in tunnels underneath the ground, to a main shaft, also in a tunnel, and this in turn is driven from the main engine. Three of the pumps are run by steam heads, the steam pipes being carried in tunnels and thoroughly jacketed. The other five pumps are operated by electric motors which receive their current from a generator in the main station.

Water from all the wells is delivered to a 250,000-gallon reservoir. As all underground water in this section contains more or less iron, which it is quite desirable to remove, aeration is resorted to. From the reservoir mentioned above the water flows over a weir and down a sloping concrete slab which exposes it to the air in a thin sheet. From this it passes to a second reservoir of 750,000 gallons. This method of aeration is fairly effective, but does not accomplish all that could be desired, and it is proposed to provide other arrangements before long.”

Reference: “Champaign Urbana Water Works.” 1909. Municipal Journal and Engineer. 26:15(April 14, 1909): 625.

Commentary:  I am not surprised that the method of aeration is only “fairly effective.” The author was probably being kind. It would take a few more decades before efficient aeration devices were created to oxidize ferrous iron in groundwaters. Note the “security” fence around the reservoir.

Advertisements

March 26, 1914: Typhoid in Rockville, MD

March 26, 1914:  Municipal Journal letter to the editor. Typhoid Epidemic at Rockville, MD. “Prof. Earle B. Phelps for the United States Government at Washington, Robert B. Morse, chief engineer Maryland State Board of Health, a number of others and the writer were recently called upon by the authorities at Rockville to inquire into and alleviate a typhoid epidemic in which two per cent. of the entire population were stricken with the disease. There have been more than 20 cases, but to date there have been no deaths.

Rockville, a small town of 1,100 inhabitants, lies about 18 miles distant from Washington, D. C. It is built on the backbone of a ridge draining into three watersheds. Since 1897 the town has operated its own waterworks, obtaining a supply from two driven wells about 40 feet apart and some 225 feet deep, located in the valley in the direct line of the storm water run off from the town which takes approximately one-half the runoff.

The district surrounding the pumping station is sparsely built up, the town is unsewered and has few storm water drains. Kitchen and bath wastes are permitted to pass into the street and down the gutter. Cesspools and open closets dot the hillside. A small stream passing near the pumping station serves as an outlet for floods, kitchen wastes, etc. The normal flow of the creek does not exceed 4 cubic feet per minute.

The soil formation is clay (disintegrated rock), which is in turn underlaid with rock in layers, the seams of the rock containing clay, broken stone, etc., and in some instances forming open crevices and pockets….

The wells have been in service for nearly 17 years and the people have, until now, suffered no ill therefrom. However, after the installation of the supply, it was noticed from time to time during large storms that inundated the valley, that No. 1 well occasionally supplied turbid water. It was noticed further, that by pumping No. 1 well continuously for several hours, the water level was lowered very materially in well No. 2. Also that when No. 2 well was pumped the water was never turbid. and that the water level in well No. 1 was very little affected. Well No. 1 always seemed to have a surplus of water, whereas well No. 2 dropped fully 70 feet, in fact to such depth that the deep well pump would just draw all the well flowed.

This information should have indicated at once both to the town authorities and the public that No. 1 well was drawing from a surface supply; that the well was not tight, and that it should have been fixed or abandoned.

The sketch enclosed shows the approximate location of pumping station, creek, topography of ground and position of nearest dwellings….About one hour after the water containing dye would flood the elderberry bush the dye would appear in well No. 1. When examined, this water showed gross pollution, whereas water in well No. 2 gave practically no indication of pollution. More than a week was consumed in locating the source of pollution. The first home in which the typhoid had occurred was the one nearest the wells and the one which was polluting the well.

The water is now being sterilized with hypochlorite and use of well No. 1 discontinued, and it has been recommended to extend a 6-inch casing down well No. 2 to the 6-inch well barrel, using a piece of jute to make a temporary joint between pipe and well and to fill the well barrel between the new casing and the rock with cement, to pump and test well as originally tried when the contamination was established, and if it still shows contamination from an analysis after sterilizing and pumping, to drive a new well.”

Reference:  Hatton, Herbert W. 1914. Letter to the Editor. Municipal Journal. 36:13(March 26, 1914): 428-9.

Commentary:  Well No. 1 would certainly qualify today as a Ground Water Under the Direct Influence of Surface Water. If anyone wonders why state health departments make such a big deal out of GWUDISW, they should read this article. Earle B. Phelps was one of the expert witnesses in the second Jersey City trial that evaluated the use of chlorine for drinking water disinfection. He opposed the use of chlorine in 1909, but he seems to have come around five years later.

November 20, 1983: Pesticide in Florida wells

Ethylene Dibromide

November 20, 1983New York Times headline—Pesticide Reported in More Wells in Florida. “Evidence is increasing that a pesticide banned in September by the Federal Government because it is a cancer- causing agent is invading the underground drinking water reservoirs of Florida.

Since July, when Florida state chemists began testing drinking water wells for ethylene dibromide, known as EDB, an average of 20 percent of the wells sampled have been found to contain more than the level Florida health officials consider safe, one part of the chemical for every 10 billion parts of water.

Until last week, testing had been confined to areas near 422 acres of ”buffer zones” along citrus groves where large amounts of the pesticide were injected to block the spread of root worms, which are burrowing nematodes. The doses, more than three times the amount prescribed by Environmental Protection Agency, were applied by the State Department of Agriculture and Consumer Services, which regulates pesticide use in Florida.

But state agriculture officials said 10 times more land in Florida’s citrus area had been treated with big doses of the pesticide than they had first reported.

State records show 4,268 acres, rather than 422, were treated with the pesticide under a Federal and state agriculture program begun in 1961. State health, agriculture and environmental officials say they have no records of how much EDB was applied to other crops by farmers and exterminators. The Federal Government allowed treatment with the pesticide on nearly 40 crops until Sept. 30, when William D. Ruckelshaus, the E.P.A. Administrator, issued an emergency ban on its use as a soil fumigant.”

2,500 Pound Cylinders Containing Ethylene Dibromide

November 4, 1992: Tucson Starts Delivery of CAP Supply; 2000: Restoring the Everglades

November 4, 1992:  Tucson Starts Direct Delivery of Central Arizona Project Water Supply. Corrosive water destroying pipes in a major American city preceded the events in Flint, Michigan by over two decades. On November 4, 1992, the water department for Tucson, Arizona, (Tucson Water or TW) began delivery of a new water supply: treated surface water from the Central Arizona Project (CAP)—primarily Colorado River water. Putting treated CAP water into the TW distribution system caused a corrosion problem that resulted in colored water (e.g., rusty, red, orange, yellow and brown) flowing from customer taps. Tucson’s introduction of CAP water is a story of mistakes committed at all levels of the utility and by the Tucson City Council.

Technical mistakes included not preparing the distribution system to receive a more complex surface water supply. TW was a groundwater utility that relied on about 200 wells distributed throughout the system. Recognizing their lack of experience with treating surface water, they hired treatment plant operators from other utilities to run the new $80 million leading-edge-technology treatment plant. Unfortunately, the same level of focus and preparation was not applied to the aging distribution system, which received, literally overnight, a chloraminated supply to half its customers from a single point of entry.

One of the biggest mistakes was not testing the impact of treated CAP water on corroded galvanized steel pipes. There were about 200 miles of this 2-inch substandard pipe in the system. When treated CAP water hit these pipes, the iron corrosion deposits inside the pipes were stripped away causing colored water, taste and odor problems, and damage to home plumbing, appliances and property due to flooding.

There was a rush to deliver CAP water and to hold down costs to the detriment of needed studies, which would have shown that raising the treated water pH for corrosion control was the proper approach.

Also high on the list of pre-delivery problems was a lack of political will to replace the substandard galvanized and cast iron street mains. The presence of these substandard pipes made the TW distribution system ripe for a catastrophic corrosion problem due to unsound corrosion control practices.

Delivery of CAP water was terminated on September 26, 1994, because of the inability of TW to control the colored water problem and the resulting political uproar. The $80 million treatment plant was shut down and has not been used since.

After a series of management resignations and firings over several years, Tucson hired David Modeer as the Director of TW. Modeer and his management team put the utility on the road to recovery. Along with a carefully planned technical program to select the correct corrosion treatment and deal with the taste and odor problems, an innovative public information campaign that also included a public apology for the CAP debacle, began to restore the credibility of TW. Customers were invited to actively participate in determining the future use, treatment and quality of CAP water via such methods as consumer preference research and participation in an extensive bottled water program.

After the voters defeated a proposition in 1999 that would have severely limited the ability to use CAP water in the future, TW completed an aquifer storage and recovery project in the nearby Avra Valley. The Central Avra Valley Storage and Recovery Project (CAVSARP) allowed the utility to fully use its CAP allotment and serve a recovered groundwater/recharged CAP water mix that was accepted by TW customers. Tucson Water turned around a disaster into a singular success. Because of its ability to conjunctively use CAP water and groundwater, Tucson is now one of the more drought-resistant communities in the Southwest.

Commentary:  Marie Pearthree and I are writing a book about what happened in Tucson before, during and after the corrosion problem doomed their new water supply. A wealth of material has revealed previously unknown information related to TW’s problems. The result of these efforts are much-needed lessons for water utilities on how to avoid TW’s mistakes and how to successfully introduce a new water supply. As of this date in 2017, we are finishing up the research and beginning to write some of the chapters.  It is hard to predict when we will complete the book, but we will be giving papers on what we have found during our research at several venues in 2018. Watch this space for presentation times, dates and locations.

November 4, 2000: New York Times headline–House Approves Plan to Restore Everglades. “In a rare moment of solidarity, the House voted today for a $7.8 billion plan intended to restore the Florida Everglades, a project supporters call the largest environmental renewal effort ever.

The legislation now goes to President Clinton, who is expected to sign the bill into law and set in motion a restoration plan that would take nearly four decades to complete.

By passing the measure, 312 to 2, House Republicans and Democrats set aside their partisan rancor for two hours this morning and made the Everglades bill their final vote before leaving town to campaign for the Nov. 7 elections.

The blueprint to restore the Everglades was developed by the Army Corps of Engineers. The plan is to revamp South Florida’s water supply by catching and storing rainwater, then rerouting its flow into the Everglades, which stretches south of Orlando through the Florida Keys.”

October 15, 1918: First Water Permit Issued to LADWP; 1988: Uranium Leak

October 15, 1918:  Date of first water permit issued to the Los Angeles Department of Water and Power for the Owens Valley water supply. On this date, the California Department of Public Health issued the first water supply permit to LADWP for the Owens Valley water supply, which started operation on November 5, 1913. The permit includes a report authored by Ralph Hilscher who was the Southern Division Engineer at the time. The report catalogues all of the major features of the Owens Valley supply including the physical facilities built to transport the water 233 miles to Los Angeles. In the report is a detailed assessment of the potential sources of contamination of the water supply by human habitation. The report stressed that only 1.5 persons per square mile occupied the Owens Valley aqueduct watershed compared with 132 persons per square mile, which was stated as typical of watersheds in Massachusetts.

Ignored were the potential pathogens from animals such as deer, beavers and cows (Giardia lamblia and Cryptosporidium parvum). Health authorities simply were not aware at that time of the potential for these pathogen sources to contaminate a water supply and cause disease in humans (zoonotic diseases). A statement in the report makes this point clearly, “It is the consensus of opinion among sanitarians that human waterborne diseases have their origin only in human beings.”

The report recognized the purifying action of the large reservoirs in the Owens Valley system that had extensive detention times, which were instrumental in reducing pathogen concentrations.

Another fact that I was unaware of until I read the report was that the first 24 miles of the aqueduct were earthen-lined and not lined with concrete.

Missing from the report is any mention of the use of chlorine for disinfection. Other literature sources had estimated that chlorination of the LA Aqueduct supply could have taken place as early as 1915. It is clear from the Department of Public Health report that any chlorination of LA water supplies around 1915 must have referred to disinfection of the water from infiltration galleries along the Los Angeles River. One report that I have read (unconfirmed) stated that ammonia was also added at the infiltration galleries to form chloramines. I have still not located a firm date when the Owens Valley supply was chlorinated.

A letter dated December 12, 1924, from Carl Wilson who was the Laboratory Director for the LADWP to C.G. Gillespie of the Bureau of Sanitary Engineering summarized the progress that they had made in applying chlorine to their system. In that letter are two curious statements by Mr. Wilson. First, he only planned to operate chlorinators treating water from the reservoirs during the rainy season because no local runoff would be entering the hillside reservoirs. Second, he did not see the need to determine chlorine residual using the orthotolidine method, but he would do so if required by the Department. It took a long time for sanitary practices to penetrate the operational mindset of all water utilities not just the LADWP. From a paper published in 1935, we know that the entire system was chlorinated by that time with multiple application points in the system.

Read the entire permit for a fascinating view into the thinking of a regulatory agency during the early days of our understanding of watershed protection and maintenance of a water supply that would be free from disease causing microorganisms.

Reference:  Goudey, R.F. “Chlorination of Los Angeles Water Supply.” Am J Public Health Nations Health. 1935 June; 25(6): 730–734. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1558978/ Accessed October 14, 2013.

Credit:  Thanks to Susan Brownstein of LADWP for sharing a copy of the permit with me.

Uranium Contaminated Site

October 15, 1988: New York Times headline–U.S., for Decades, Let Uranium Leak at Weapon Plant. “Government officials overseeing a nuclear weapon plant in Ohio knew for decades that they were releasing thousands of tons of radioactive uranium waste into the environment, exposing thousands of workers and residents in the region, a Congressional panel said today.

The Government decided not to spend the money to clean up three major sources of contamination, Energy Department officials said at a House Energy and Commerce subcommittee hearing. Runoff from the plant carried tons of the waste into drinking water wells in the area and the Great Miami River; leaky pits at the plant, storing waste water containing uranium emissions and other radioactive materials, leaked into the water supplies, and the plant emitted radioactive particles into the air…Fernald’s problems with radioactive emissions have been public knowledge and a source of anxiety and frustration for several years.

But in court documents discussed today at the hearing and reported last week by the Cincinnati papers, Government officials acknowledged for the first time that ”the Government knew full well that the normal operation of the Fernald plant would result in emissions of uranium and other substances” into water supplies and into the atmosphere.”

October 2, 1933: Death of Philipp Forchheimer

October 2, 1933Philipp Forchheimer, Austrian hydraulic engineer, died. “[He] made significant studies of groundwater hydrology. Early in his academic career, he worked on problems of soil mechanics. Later, he turned to hydraulic problems, establishing the scientific basis of the discipline by applying standard techniques of mathematical physics – in particular Laplace’s equation – to problems of groundwater movement. Laplace’s equation had already been well developed for heat flow and fluid flow. Forchheimer extended the preexisting mathematical theory to calculations of groundwater flow.”

September 26, 1994: Tucson Shuts off CAP Supply; 1908: First Chlorine Use in US; 1855: Handle Put Back on Broad Street Pump

September 26, 1994: Tucson Shuts off Direct Delivery of Central Arizona Project Water Supply. Corrosive water destroying pipes in a major American city preceded the events in Flint, Michigan by over two decades. On November 4, 1992, the water department for Tucson, Arizona, (Tucson Water or TW) began delivery of a new water supply: treated surface water from the Central Arizona Project (CAP)—primarily Colorado River water. Putting treated CAP water into the TW distribution system caused a corrosion problem that resulted in colored water (e.g., rusty, red, orange, yellow and brown) flowing from customer taps. Tucson’s introduction of CAP water is a story of mistakes committed at all levels of the utility and by the Tucson City Council.

Technical mistakes included not preparing the distribution system to receive a more complex surface water supply. TW was a groundwater utility that relied on about 200 wells distributed throughout the system. Recognizing their lack of experience with treating surface water, they hired treatment plant operators from other utilities to run the new $80 million leading-edge-technology treatment plant. Unfortunately, the same level of focus and preparation was not applied to the aging distribution system, which received, literally overnight, a chloraminated supply to half its customers from a single point of entry.

One of the biggest mistakes was not testing the impact of treated CAP water on corroded galvanized steel pipes. There were about 200 miles of this 2-inch substandard pipe in the system. When treated CAP water hit these pipes, the iron corrosion deposits inside the pipes were stripped away causing colored water, taste and odor problems, and damage to home plumbing, appliances and property due to flooding.

There was a rush to deliver CAP water and to hold down costs to the detriment of needed studies, which would have shown that raising the treated water pH for corrosion control was the proper approach.

Also high on the list of pre-delivery problems was a lack of political will to replace the substandard galvanized and cast iron street mains. The presence of these substandard pipes made the TW distribution system ripe for a catastrophic corrosion problem due to unsound corrosion control practices.

Delivery of CAP water was terminated on September 26, 1994, because of the inability of TW to control the colored water problem and the resulting political uproar. The $80 million treatment plant was shut down and has not been used since.

After a series of management resignations and firings over several years, Tucson hired David Modeer as the Director of TW. Modeer and his management team put the utility on the road to recovery. Along with a carefully planned technical program to select the correct corrosion treatment and deal with the taste and odor problems, an innovative public information campaign that also included a public apology for the CAP debacle, began to restore the credibility of TW. Customers were invited to actively participate in determining the future use, treatment and quality of CAP water via such methods as consumer preference research and participation in an extensive bottled water program.

Dedication of CAVSARP/Clearwater Project, 5/3/01

After the voters defeated a proposition in 1999 that would have severely limited the ability to use CAP water in the future, TW completed an aquifer storage and recovery project in the nearby Avra Valley. The Central Avra Valley Storage and Recovery Project (CAVSARP) allowed the utility to fully use its CAP allotment and serve a recovered groundwater/recharged CAP water mix that was accepted by TW customers. Tucson Water turned around a disaster into a singular success. Because of its ability to conjunctively use CAP water and groundwater, Tucson is now one of the more drought-resistant communities in the Southwest.

Commentary: Marie Pearthree and I are writing a book about what happened in Tucson before, during and after the corrosion problem doomed their new water supply. A wealth of material has revealed previously unknown information related to TW’s problems. The results of these efforts are much-needed lessons for water utilities on how to avoid TW’s mistakes and how to successfully introduce a new water supply. As of this date in 2017, we are finishing up the research and beginning to write some of the chapters. It is hard to predict when we will complete the book, but we will be giving papers on what we have found during our research at several venues in 2018. Watch this space for presentation times, dates and locations.

Building on the right housed the chloride of lime feed facility at Boonton Reservoir

September 26, 1908:  106th anniversary of the first day of operation of the chlorination facility at Boonton Reservoir for Jersey City, NJ.  This was the first continuous use of chlorine in the U.S. for drinking water disinfection.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with the Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. One of the company’s employees, Dr. John L. Leal, would have an enormous impact on this water supply and the history of water treatment. Leal was a physician, public health professional and water quality expert. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses.

The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1908 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on such a large-scale basis.

Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2013, marks the 105th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Broadwick [formerly, Broad] Street showing the John Snow memorial and public house.

September 26, 1855:  The St. James Board of Commissioners of Paving voted 10 to 2 to reopen the Broad Street pump at the urging of local residents.  Dr. John Snow had prevailed upon them a year earlier to remove the pump handle after he presented his evidence that cholera deaths were geographically clustered around the well site.

Reference: Vinten-Johansen, Peter, Howard Brody, Nigel Paneth, Stephen Rachman and Michael Rip. Cholera, Chloroform, and the Science of Medicine. New York:Oxford University, 2003, 310.