Tag Archives: John L. Leal

November 12, 1881: Paterson, NJ Water Supply; 1732: Pitot Tube Invention

Great Falls at Paterson, New Jersey

November 12, 1881: Article in Engineering News—The History and Statistics of American Water-Works. “Paterson, New Jersey, is on the Passaic River, about 16 miles NW of New York City, at the point where the river breaks through the great trap-dyke called the Watchung or Orange Mountain, and falls 80 ft. The water power afforded by this fall with a water-shed of 855 square miles above it, was purchased in 1791 ‘by the Society for the Encouragement of Useful Manufactures,’ and is still controlled by them. A dam across the river a short distance above the falls diverts the water into a canal, from which it is drawn to furnish power to 13 manufacturing establishments.

Water-works were built in 1856 by a private company, taking the supply from the river at the edge of the falls and below the Society’s dam. The surplus flow of the river passing over the dam was used for power and for supply. A turbine wheel was placed in a rift in the face of the falls, which, being erected over the masonry made a tail race. The wheel drove a piston pump which forced the water into a small reservoir on an eminence in the city. As the consumption increased, the amount of water in the river which was not used for mill purposes was insufficient for motive power and supply, notwithstanding the erection by the company of a small stone dam along the face of the falls, making a little pool for storage below the Society’s dam. In 1878, a Worthington high-pressure engine and pump of 8,000,000 gallons’ capacity were erected. The original pumps driven by water force have been replaced by others. There are now two horizontal pumps with a combined capacity of 14,000,000 gallons per day, and one with 2,000,000 capacity. There are three reservoirs, built in excavation and embankment, supplying different levels of the city. Their capacities are, respectively, 8, 8, and 2,000,000 gallons.”

Reference: Croes, J. James. “The History and Statistics of American Water-Works.” Engineering News. 8 (November 12, 1881): 459.

CommentaryThe water supply for Paterson figures prominently in my book, The Chlorine Revolution, which was published in April 2013. Dr. John L. Leal was the Public Health Officer for Paterson from 1890 to 1899 and he was responsible for the safety of this water supply. In 1899 because of increasing contamination of the Passaic River, the water supply withdrawal point was moved 5 miles upstream to Little Falls.

Different Early Versions of the Pitot Tube

November 12, 1732Today in Science History. “In 1732, Henri Pitot read a paper to the Royal Academy of Sciences in Paris about an instrument he had invented to measure the flow velocity at different depths of water in the River Seine. It had a scale and two open vertical glass tubes on a wood frame. The lower end of one pointed down, the other bent at 90º facing the flow. The belief of the time was that flow velocity at a given depth was proportional to the mass above it, meaning increasing velocity at greater depth. Recording the difference in liquid levels in the two tubes, he showed the opposite was true. Henri Darcy improved the design, with the support of Henri Bazin.”

Advertisements

October 21, 1914: Treasury Drinking Water Standards

Dr. Rupert Blue, 4th Surgeon General of the U.S.

October 21, 1914:  The first numerical drinking water regulations in the U.S. were adopted. “On October 21, 1914, pursuant to the recommendation of the Surgeon General of the Public Health Service [Dr. Rupert Blue], the Treasury Department adopted the first standards for drinking water supplied to the public by any common carrier engaged in interstate commerce. These standards specified the maximum permissible limits of bacteriological impurity, which may be summarized as follows:

  1. The bacterial plate count on standard agar incubated for 24 [hours] at 37 [degrees] C was not to exceed 100/cc.
  2. Not more than one of the five 10-cc portions of each sample examined was to show presence of B. coli. [equivalent to no more than 2 /100 mL—MPN index for total coliforms]
  3. The recommended procedures were those in Standard Methods of Water Analysis (APHA, 1912) [2nd edition].

These standards were drafted by a commission of 15 appointed members. Among the members of this commission were Charles Gilman Hyde, Milton J. Rosenau, William T. Sedgwick, George C. Whipple and C.-E. A. Winslow, names well known to those who have studied early developments in water treatment.

Though not a part of the standards, the accompanying first progress report is very interesting as it provides insight into the commission’s deliberations on other problems. There appears to have been considerable discussion on whether the standards should also state that the water shall ‘be free from injurious effects upon the human body and free from offensiveness to the sense of sight, taste, or smell’; whether the quality of water required should be obtainable by the common carriers without prohibitive expense; and whether it would be necessary to require more than a ‘few and simple examinations to determine the quality of drinking water.’”

Reference:  AWWA. Water Quality and Treatment. 3rd ed. New York:McGraw Hill, 1971, p. 16-7.

Commentary: Sedgwick, Whipple and Winslow were professors at MIT, Harvard and Yale, respectively. They were also expert witnesses who played prominent roles in the lawsuit between Jersey City and the Jersey City Water Supply Company in 1906-1909. During the second Jersey City trial, they adamantly opposed the use of chlorine by Dr. John L. Leal. The story of the trials and the first continuous use of chlorine to disinfect a U.S. water supply are detailed in The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives, which was published in the spring of 2013.

September 26, 1994: Tucson Shuts off CAP Supply; 1908: First Chlorine Use in US; 1855: Handle Put Back on Broad Street Pump

September 26, 1994: Tucson Shuts off Direct Delivery of Central Arizona Project Water Supply. Corrosive water destroying pipes in a major American city preceded the events in Flint, Michigan by over two decades. On November 4, 1992, the water department for Tucson, Arizona, (Tucson Water or TW) began delivery of a new water supply: treated surface water from the Central Arizona Project (CAP)—primarily Colorado River water. Putting treated CAP water into the TW distribution system caused a corrosion problem that resulted in colored water (e.g., rusty, red, orange, yellow and brown) flowing from customer taps. Tucson’s introduction of CAP water is a story of mistakes committed at all levels of the utility and by the Tucson City Council.

Technical mistakes included not preparing the distribution system to receive a more complex surface water supply. TW was a groundwater utility that relied on about 200 wells distributed throughout the system. Recognizing their lack of experience with treating surface water, they hired treatment plant operators from other utilities to run the new $80 million leading-edge-technology treatment plant. Unfortunately, the same level of focus and preparation was not applied to the aging distribution system, which received, literally overnight, a chloraminated supply to half its customers from a single point of entry.

One of the biggest mistakes was not testing the impact of treated CAP water on corroded galvanized steel pipes. There were about 200 miles of this 2-inch substandard pipe in the system. When treated CAP water hit these pipes, the iron corrosion deposits inside the pipes were stripped away causing colored water, taste and odor problems, and damage to home plumbing, appliances and property due to flooding.

There was a rush to deliver CAP water and to hold down costs to the detriment of needed studies, which would have shown that raising the treated water pH for corrosion control was the proper approach.

Also high on the list of pre-delivery problems was a lack of political will to replace the substandard galvanized and cast iron street mains. The presence of these substandard pipes made the TW distribution system ripe for a catastrophic corrosion problem due to unsound corrosion control practices.

Delivery of CAP water was terminated on September 26, 1994, because of the inability of TW to control the colored water problem and the resulting political uproar. The $80 million treatment plant was shut down and has not been used since.

After a series of management resignations and firings over several years, Tucson hired David Modeer as the Director of TW. Modeer and his management team put the utility on the road to recovery. Along with a carefully planned technical program to select the correct corrosion treatment and deal with the taste and odor problems, an innovative public information campaign that also included a public apology for the CAP debacle, began to restore the credibility of TW. Customers were invited to actively participate in determining the future use, treatment and quality of CAP water via such methods as consumer preference research and participation in an extensive bottled water program.

Dedication of CAVSARP/Clearwater Project, 5/3/01

After the voters defeated a proposition in 1999 that would have severely limited the ability to use CAP water in the future, TW completed an aquifer storage and recovery project in the nearby Avra Valley. The Central Avra Valley Storage and Recovery Project (CAVSARP) allowed the utility to fully use its CAP allotment and serve a recovered groundwater/recharged CAP water mix that was accepted by TW customers. Tucson Water turned around a disaster into a singular success. Because of its ability to conjunctively use CAP water and groundwater, Tucson is now one of the more drought-resistant communities in the Southwest.

Commentary: Marie Pearthree and I are writing a book about what happened in Tucson before, during and after the corrosion problem doomed their new water supply. A wealth of material has revealed previously unknown information related to TW’s problems. The results of these efforts are much-needed lessons for water utilities on how to avoid TW’s mistakes and how to successfully introduce a new water supply. As of this date in 2017, we are finishing up the research and beginning to write some of the chapters. It is hard to predict when we will complete the book, but we will be giving papers on what we have found during our research at several venues in 2018. Watch this space for presentation times, dates and locations.

Building on the right housed the chloride of lime feed facility at Boonton Reservoir

September 26, 1908:  106th anniversary of the first day of operation of the chlorination facility at Boonton Reservoir for Jersey City, NJ.  This was the first continuous use of chlorine in the U.S. for drinking water disinfection.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with the Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. One of the company’s employees, Dr. John L. Leal, would have an enormous impact on this water supply and the history of water treatment. Leal was a physician, public health professional and water quality expert. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses.

The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1908 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on such a large-scale basis.

Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2013, marks the 105th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Broadwick [formerly, Broad] Street showing the John Snow memorial and public house.

September 26, 1855:  The St. James Board of Commissioners of Paving voted 10 to 2 to reopen the Broad Street pump at the urging of local residents.  Dr. John Snow had prevailed upon them a year earlier to remove the pump handle after he presented his evidence that cholera deaths were geographically clustered around the well site.

Reference: Vinten-Johansen, Peter, Howard Brody, Nigel Paneth, Stephen Rachman and Michael Rip. Cholera, Chloroform, and the Science of Medicine. New York:Oxford University, 2003, 310.

August 28, 1869: Birth of Allen Hazen; 1882: Death of John Rose Leal

August 28, 1869: Birth of Allen Hazen. “Allen Hazen (1869–1930) was an expert in hydraulics, flood control, water purification and sewage treatment. His career extended from 1888 to 1930 and he is, perhaps, best known for his contributions to hydraulics with the Hazen-Williams equation. Hazen published some of the seminal works on sedimentation and filtration. He was President of the New England Water Works Association and Vice President of the American Society of Civil Engineers.

During a year spent at MIT (1887-8), Hazen studied chemistry and came into contact with Professor William T. Sedgwick, Dr. Thomas M. Drown and fellow students George W. Fuller and George C. Whipple. As a direct result of his association with Dr. Thomas M. Drown, Hazen was offered his first job at the Lawrence Experiment Station in Lawrence, Massachusetts. LES was likely the first institute in the world devoted solely to investigations of water purification and sewage treatment. From 1888 to 1893, Hazen headed the research team at this innovative research institute into water purification and sewage treatment.

Hazen is most widely known for developing in 1902 with Gardner S. Williams the Hazen-Williams equation which described the flow of water in pipelines. In 1905, the two engineers published an influential book, which contained solutions to the Hazen-Williams equation for pipes of widely varying diameters. The equation uses an empirically derived constant for the “roughness” of the pipe walls which became known as the Hazen-Williams coefficient.

In 1908, Hazen was appointed by President Theodore Roosevelt to a panel of expert engineers to inspect the construction progress on the Panama Canal with President-Elect William H. Taft. Hazen specifically reported on the soundness of the Gatun Dam (an integral structure in the canal system), which he said was constructed of the proper materials and not in any danger of failure.

Hazen’s early work at the Lawrence Experiment Station established some of the basic parameters for the design of slow sand filters. One of his greatest contributions to filtration technology was the derivation of two terms for describing the size distribution of filter media: effective size and uniformity coefficient. These two parameters are used today to specify the size of filter materials for water purification applications. His first book, The Filtration of Public Water Supplies, which was published in 1895, is still considered a classic.

His first assignment as a sole practitioner in 1897 was the design of the filtration plant at Albany, New York. The plant was the first continuously operated slow sand filter plant in the U.S.

One of his early assignments was as consultant to Pittsburgh, Pennsylvania, to determine the best method of providing a safe water supply from the Monongahela River. For decades, the City had been wracked with typhoid fever epidemics. At the time, mechanical filtration (or rapid sand filtration was just beginning to be understood as a treatment process. As a conservative engineer, Hazen recommended that the City install slow sand filters to remove both turbidity and harmful bacteria from its water supply. As early as 1904, Hazen recommended the filtration of the Croton water supply for New York City. As of 2013, a new filtration plant on that water supply is nearing completion.

Hazen received honorary degrees of Doctor of Science from both New Hampshire College of Agriculture and Mechanical Arts (1913) and Dartmouth College (1917). In 1915, he received the Norman Medal which is the highest honor given by the American Society of Civil Engineers for a technical paper that “makes a definitive contribution to engineering science.” He was selected as an Honorary Member of the American Water Works Association in 1930. In 1971, he was inducted into the AWWA Water Industry Hall of Fame with his friend and colleague, George W. Fuller.”

Commentary: This entry is part of the biographical entry for Hazen in Wikipedia that I wrote in June 2012. I did not know much about him until I wrote the article. He was truly an amazing engineer who excelled at everything that he was engaged in.

August 28, 1882: Death of John Rose Leal. John Rose Leal was born on October 20, 1823 (or possibly 1825 or 1827) in Meredith, Delaware County, New York. His parents were John Leal and Martha McLaury who were descended from early settlers of Delaware County, New York. There are records that John Rose Leal’s great-grandfather Alexander Leal was born in Scotland in 1740 and immigrated to the British colonies in North America, landing in New York City on April 13, 1774. On John R. Leal’s mother’s side, his ancestors came from Ireland and Scotland.

There is little information on John R. Leal’s early years. According to one source, he received his preliminary education at the Literary Institute, in Franklyn, Delaware County, New York and at the Delaware Academy in Delhi, New York.

John Rose Leal received his medical training under Dr. Almiran Fitch of Delhi, New York and completed his medical degree at Berkshire Medical College. Located in the westernmost regions of Massachusetts, Berkshire County, the medical college was in a remote part of the young country separated from the rest of the state by the Berkshire Mountains. The mission of Berkshire Medical College was to train doctors to serve the sparsely populated rural areas that were dominated by agriculture. Founded in 1822 as the Berkshire Medical Institution, the school had to overcome resistance from Harvard Medical School that objected to the establishment of another medical training facility in Massachusetts. With a student population of about 30 in the 1840s, a medical education was offered to students for the magnificent sum of $140 per year.

John Rose Leal received his medical degree in 1848 and shortly thereafter opened up a medical practice in Andes. Dr. Leal continued his education with a post-graduate course at the Columbia College of Physicians and Surgeons in New York City—an institution that would figure prominently in one son’s education.

There is a limited amount information about his wife, Mary Elizabeth Laing, from historical records. Born in 1837, the fourth child of eight children, she was the daughter of Rev. James Laing of Andes, NY. She was born in Andes, NY, after the family moved there from Argyle, NY. Her father was the pastor of the Presbyterian Church of Andes.

John Rose Leal and Mary E. Laing were married in Andes on August 29, 1855. Mary E. Laing was only 18 when she married the successful country doctor. John L. Leal was born to the couple on May 5, 1868. Census records from 1860 show that another child was born to the couple about 1859 in Andes, William G. Leal. Another brother was born much later in Paterson, New Jersey, about 1870, Charles E. Leal. There are no records showing that William G. Leal survived into adulthood. Charles E. Leal lived to the age of 24 and died in 1894 in Paterson.

The simple rural life in Andes, New York was shattered by the Civil War in 1862 when the 144th Regiment, New York Volunteers was formed in Delaware County and the surrounding area. John R. Leal’s first appointment was as regimental surgeon and over the next three years he was promoted to surgeon at the brigade, division and corps levels. Toward the end of the war he held the title of Medical Director in the Department of the South. According to an obituary, Dr. Leal was wounded twice and was with his regiment at the battle of John’s Island.

The 144th Regiment was stationed on Folly Island in 1863 as part of the siege of Charleston, South Carolina. According to the history of the regiment, “very nearly every man in the Regiment got sick…with bad and unhealthy water to drink.” The only treatment at the time for the debilitating dysentery that overwhelmed the Regiment was the administration of “opium pills” by Dr. Leal. The pills did not cure anything but they made the recipients feel somewhat better. Dr. Leal became so ill that he received medical leave for a time, but it is clear from the records that he never fully recovered.

Dr. Leal was mustered out of the 144th Regiment on June 25, 1865 after which time he returned to his simpler life in Andes, New York. However, he brought a dreadful souvenir of the war home with him and he suffered with it for the next 17 years.

In one obituary, it was stated: “…his death, which resulted from an attack of peritonitis of an asthenic character, sequel to an attack of dysentery, which at the outset did not indicate an unusual degree of severity, but was undoubtedly aggravated by the chronic diarrhea from which he had been a sufferer more or less constantly since his retirement from the army.”

Another obituary was equally clear as to the cause of his death: “He never recovered from the effects of disease contracted on Folly Island, and this induced other complications, resulting in his death.”

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Commentary: Dr. John Rose Leal was the father of Dr. John L. Leal who was responsible for the first chlorination of a U.S. public water supply—see The Chlorine Revolution.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

August 20, 1831: Birth of Eduard Suess; 1914: Disinfection of Sewage Plant Effluents

August 20, 1831: Birth of Eduard Suess, Austrian geologist.
He developed the plan for a 69-mile (112-kilometre) aqueduct (completed 1873) that brought fresh water from the Alps to Vienna. http://www.britannica.com/EBchecked/topic/571632/Eduard-Suess

At the age of nineteen he published a short sketch of the geology of Carlsbad and its mineral waters… n 1862 he published an essay on the soils and water-supply of Vienna http://www.nndb.com/people/266/000097972/

In 1864, the Vienna City Council voted the construction of the First Vienna Spring Water Main, which to this day covers approximately 40 percent of Vienna’s water requirements. It was planned by the geologist and City Council member Eduard Suess and implemented under Mayor Cajetan Felder. The main was to safeguard adequate drinking water supply even for the suburbs and to improve its quality, thereby excluding any further health hazards for the population.

After a construction period of only three years, the First Vienna Spring Water Main was inaugurated on 24 October 1873 by Emperor Francis Joseph I concurrently with the Hochstrahlbrunnen Fountain in Schwarzenbergplatz. The pipeline is 120 kilometres long, cost 16 million Gulden to build and soon became a symbol of Vienna’s liberation from water shortages and dangers of epidemics. In residential buildings, the formerly used domestic wells were gradually replaced by communal water taps. In 1888, over 90 percent of residential buildings situated within Vienna’s (then) municipal territory were already connected to the new main.

http://www.wien.gv.at/english/environment/watersupply/supply/history/first-pipeline.html

August 20, 1914: Municipal Journal article. Operation of Sewage Disposal Plants—Disinfection. “Having determined upon the size of the dose, the next thing is to apply it to the sewage or effluent at a uniform rate. The best practice is to dissolve the required number of pounds in a given amount of water and feed the solution at a definite rate proportional to the flow of liquid to be disinfected. This is not so simple as one might at first suspect. Several things have to be looked out for. The commercial dry powder varies in strength and loses strength considerably when exposed to the air. There must be sufficient water to dissolve out the hypochlorite, and care must be used in mixing the solution. The solution is corrosive and acts on tanks, piping, valves, etc., and it also forms incrustations which cause frequent stoppages in pipes, valves and feeding devices.

Unless it is feasible to analyze each lot of bleach, it should be bought with the available chlorine specified by the dealer. As the material deteriorates upon opening, the contents of a whole container should be mixed at once if possible. In many plants, however, this cannot be done; in such cases the unused material must be kept tightly covered in a cool dry place. While the larger sized containers hold about 700 pounds, at a slight increase in price hypochlorite can be obtained in 350-pound or 100-pound drums, and in many cases the smaller sizes are to be preferred, both because of convenience in handling and to avoid the keeping of large quantities exposed to the atmosphere.

In the mixing of the bleach, the active hypochlorite is dissolved while the inert lime and other insoluble impurities remain. Usually the bleach is thoroughly mixed with a small amount of water into a paste or cream so as to break up the lumps, then more water is added and the whole transferred to the solution tank, and agitated until a thoroughly homogeneous solution is obtained.

As it is very important that the solution be of the same strength throughout, and as this mixing is a laborious process, a power mixer should always be installed except, perhaps, for very small quantities. After all the hypochlorite has been dissolved and the solution once properly stirred up, the strength remains the same throughout the tank.

In some plants the contents of a whole container of bleach are washed out into the solution tank by means, of a stream of water from a hose, and the whole agitated until a thorough solution is obtained. In the mixing, care must be used to get the material thoroughly broken up and agitated so that all the hypochlorite will be dissolved or else a considerable amount of material will be wasted. The writer has known of over fifty per cent waste, due to improper methods of mixing. He has suggested a mixer in the form of a mill or grinder, so that the bleach could be fed through and ground with a stream of water. This he believes would break up lumps and hasten the process.

One should not attempt to dissolve too much hypochlorite in a given amount of water. The solubility of bleach is only about five per cent, and a five per cent solution is difficult to obtain and difficult to handle. It is much better, when possible, to use a weaker solution, say two or three per cent. It is usually better to keep the solution the same strength by mixing the required number of pounds according to the strength of the dry powder, and to vary the dose by changing the feeding device. A rod should be laid off, showing the number of pounds to be used for different depths of water in the tank, from the top down, so that if all of the solution is not run out the rod will show immediately the number of pounds to be used for the amount of water necessary to fill up the tank.”

Commentary: This article was published about six years after the startup of the chloride of lime (calcium hypochlorite) feed system ordered by Dr. John L. Leal and built by George Warren Fuller at Boonton Reservoir—see schematic of Fuller’s chemical feed system below. The description of the chloride of lime feed system for sewage treatment plants (above) is very similar to the one shown below. The article is also quite honest about the many problems with using chloride of lime as a source of chlorine to disinfect water. None of these issues were brought to light during the optimistic testimony given by Leal and the other defendant witnesses at the second Jersey City trial. Over time, chloride of lime feed systems were replaced with pressurized systems feeding chlorine gas from storage tanks of liquid chlorine stored under pressure.

August 19, 1908: Passaic River Pollution Case

1895 Map of Paterson, NJ. Note how the Passaic River practically surrounds the city.

August 19, 1908: Municipal Journal and Engineer article. Stream Pollution Decisions. “In the State of New Jersey an award was recently made by Vice-Chancellor Stevens of the State Court of Chancery in the case of damages claimed to be caused by the pollution of the Passaic river, which introduced some novel methods which may probably be accepted as a precedent in other cases. The city of Paterson discharges sewage into the stream and, the Courts of the State having ruled that riparian owners below the outlets could not claim damages unless the stream received more sewage than it could dilute to an inoffensive condition, no action was taken at first. In time, however, it became evident that a nuisance was being created and complaints to the Paterson Board of Health, to the State Board of Health and to the Legislature having resulted in no abatement of the same, owners of about twenty of the riparian properties, each from 150 to 600 feet deep, brought a suit for injunction to restrain the city from damaging the property owners. The court ruled that an injunction which would prevent the city from using its sewers would work a far greater injury than that being suffered by the property owners, and ordered that instead the city should pay damages in amounts to be settled by a Court of Equity.

Action in such a court was accordingly brought and the city agreed that it would cease polluting the river in the manner complained of within five years from that time. The matter therefore resolved itself into a determination of the amount of damages inflicted upon the owners from the time the damage began until the time promised for its discontinuance. In fixing the first date a large amount of testimony, both expert and otherwise, was taken by the court; but the former, calculated to show what amount of sewage can be discharged into a stream without creating a nuisance, was apparently considered of minor importance by the court. The testimony of the property owners indicated that not until 1892 did the condition of the river have any appreciable influence on the use of the stream for fishing or bathing, but that from then on the evidence of sewage pollution became marked. This date was, accordingly, accepted by the court as that when the damage began, although the plaintiff endeavored to have it made earlier on the ground of the water being rendered unfit for drinking purposes as soon as sewage began to be discharged into it. This last contention was not admitted, however, as there was already such danger from other communities before the Passaic sewers were built.

The fixing of the amount of damages was even more complicated and difficult than determining their duration. The city contested that it was not responsible for contamination due to storm water from the streets, and the court admitted this to a degree only, holding that the city was not responsible for such storm water as flowed over the surface to the river, but was responsible for that discharged thereinto through the sewers. The contention of the city that it should not be held responsible for such injury as would have been done the river by a city of the same size as Paterson, but without sewers, was not admitted by the court. It was also contended that the industrial establishments of the city should stand their proportionate parts of whatever award was made, and although the court appeared to consider the city as responsible for about three-fourths of the total pollution and the industries for one-fourth, it does not appear to either admit or deny this contention, probably leaving this for settlement between such industries and the city.”

Commentary: This case shows the evolution of legal and scientific thought on river pollution after the turn of the 20th century. Note that the concept of dilution was losing favor as the impacts of sewage discharge into a watercourse were becoming better understood. Also it is interesting to note the discussion of stormwater and its impact on surface water quality. I believe that rulings such as this and new laws passed by the states were the defining events that led to an improvement in the water quality of rivers in the U.S. The judge in this case was Frederic W. Stevens who as vice chancellor of the Chancery Court of New Jersey was handling, at the same time, the case between Jersey City and the private water company that built the new water supply at Boonton Reservoir.

Dr. John L. Leal had interests in both cases. For ten years (1890 to 1899), he was the public health officer for Paterson, New Jersey. In his last few annual reports to the mayor, he urged that a solution to the water contamination from Paterson sewage discharges on the Passaic River be pursued. Ultimately, an intercepting sewer was built along the Passaic River, which collected all manner of domestic and industrial waste for discharge into New York Harbor. Eventually, a sewage treatment plant was built to treat the wastes. Leal’s involvement as an expert witness in the Jersey City lawsuit is covered in my book, The Chlorine Revolution.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

July 30, 1982: Surgeon General Koop discusses fluoride; 1894: Jersey City’s Contaminated Water Supply

July 30, 1982: This letter is in response to your request that the Public Health Service (PHS) review the scientific aspects of the epidemiological studies related to the effects of fluoride ingested through drinking water and provide advice on the validity and significance of the findings relative to dental fluorosis.
On July 30, 1982, C. Everett Koop wrote the above paragraph in a letter to John W. Hernandez, Jr., Deputy Administrator at the U.S. Environmental Protection Agency. EPA needed to re-assess and finalize interim drinking water standards set in 1975, shortly after the passage of the Safe Drinking Water Act in 1974. Fluoride was one of many compounds for which the agency needed to set an upper limit for safety. EPA had asked the Public Health Service to weigh in, and Surgeon General Koop was reporting back the findings of a committee his Chief Dental Officer had convened to conduct EPA’s requested review.

Fluoride, like chlorine, is in a unique position in drinking water: having benefits at low levels but adverse effects at higher levels. Public health professionals, and Surgeon Generals in particular, have advocated for adding low levels of fluoride to water in order to prevent tooth decay. Indeed, in his letter to Mr. Hernandez, Surgeon General Koop gave a strong endorsement of fluoridation, “I encourage the dental profession in communities which do not enjoy the benefits of an optimally fluoridated drinking water supply to exercise effective leadership in bringing the concentration to within an optimum level.” More such endorsements from Surgeon Generals can be found in “Is fluoride good for your teeth?” an article at the site Fluoride Exposed, at CDC’s fluoride and fluoridation page here, and at ADA’s fluoridation resources here.
Because we so often associate Surgeon Generals with this kind of promotion of adding fluoride to drinking water, and because we seem to forget that Surgeon Generals have also worked to make sure drinking water does not have too much fluoride in it, this quote in Surgeon General Koop’s letter is particularly interesting:
As one concerned about the total well-being of the individual and one dedicated in helping people avoid impediments to their reaching their maximum potential in society, I cannot condone the use of public water supplies that may cause undesirable cosmetic effects to teeth, just as I cannot condone the use of water supplies below the optimum concentration because of a diminished protection against dental caries.  Therefore, I encourage communities having water supplies with fluoride concentrations of over two times optimum to provide children up to age nine with water of optimum fluoride concentration to minimize the risk of their developing esthetically objectionable dental fluorosis.

The office of the Surgeon General currently works to ensure that Americans do not get too much or too little fluoride in drinking water. The most recent effort was by Surgeon General Vivek Murthy  who reviewed, endorsed, and introduced the Public Health Service’s final decision to lower the recommended level for fluoridation in 2015, from a range of 0.7-1.2 mg/L dependent on regional temperature to a single level (0.7 mg/L) for the entire country.

A copy of the original Koop letter is available here.

Acknowledgement:  Many thanks to Effie Greathouse for providing the excellent narration for this celebration of Dr. Koop’s letter.

July 30, 1894: New York Times Headline. Jersey City’s Foul Water; Sewage-Filled Passaic the Source of Its Supply. “Plenty of Good Drinking Water to be Had and Many Syndicates Ready to Furnish It — None, However, Has Influence Enough to Get a Contract — Tremendous Debt a Serious Obstacle, but Public Health Demands a Change. The people of this city are thoroughly satisfied that they have the worst drinking water to be found anywhere in the United States. This is no sudden conclusion of theirs. It is the result of a steady growth, born of an experience extending over eight or ten years.

When the Passaic River was first tapped as a source of supply, the water was pure. Dr. Chilton of New York and Prof. Horsford of Yale University, who made the analysis, pronounced it better than the water supplied to Philadelphia, New York, or Albany. But that was forty years ago, and the Passaic of 1854 was very different from the river of today.

Then the towns on its banks were merely hamlets. Paterson was only a village and Passaic and Belleville were mere dots on the map. None of them had any sewers to empty into the river, there were no factories along the banks to pollute the waters, and the fluid brought to Jersey City was limpid, clear and sparkling.

Paterson and Passaic are cities now, with extensive sewerage systems, and all the sewage of these two cities, with a population, probably, of 60,000, empties directly into the river. [Sewer Pipe, Water Pipe Death Spiral] In addition, there are many factories, mills, and dye works along the banks of the river, and all the refuse from these goes into the river along with the sewage, to further pollute the water.”

Commentary: The article goes on to catalogue the evils of the lower Passaic River as a source of supply. It would not be until 1899 that a contract was signed with Patrick H. Flynn to develop a new water supply 23 miles west of the city by building a dam on the Rockaway River forming Boonton Reservoir. It was to this water supply that Dr. John L. Leal added chlorine for the first time to disinfect drinking water for consumers. The story forms the basis for my book, The Chlorine Revolution: Water Disinfection and the Fight to Save Lives, which was published in 2013. The Sewer Pipe, Water Pipe Death Spiral was developed for the book and succinctly describes the water contamination problems of the late 19th century.