Tag Archives: miasma

July 13, 1916: Required to Use Lead Pipes and Polio Connection to Clean Streets

July 13, 1916: Municipal Journal articles.

Lead service line attached to a household water meter

Enforce Use of Lead Service Pipes. “Philadelphia, Pa.-To preserve the water supply and to help keep the streets of the city in proper condition, chief Carlton T. Davis of the bureau of water has announced that all private pipe carrying water from the public mains in the streets to buildings must be of lead from the main to the stop at the curb. The issuance of the order is possible because of the enactment of a recent ordinance by councils. At present, according to Chief Davis, about two thousand service pipes develop leaks under the paved roadways each year. This means that the water bureau loses water, the householder is subject to annoyance and the public is inconvenienced by the digging up of the streets. The bulk of service pipe leaks are caused by the use of improper material which is quickly corroded. There are more than 350,000 service pipes in use. A great many of these are of lead and give no trouble. The ordinance just passed gives the chief of the bureau of water the power to enforce the use of proper pipes.”

Commentary: I was unaware of such an ordinance in Philadelphia. I have found that dozens of other cities had similar ordinances. I have been told that the State of Pennsylvania required lead service lines early in the 20th century. In 1897, Flint, Michigan passed an ordinance requiring the installation of lead service lines. What a calamity for drinking water consumers. We are reaping the whirlwind of such decisions many years later. The graphic above shows the impact of lead exposure (paint and water) on children’s blood lead levels in 20 Pennsylvania cities (taken from a 2014 report).

Blood lead levels of children in Pennsylvania cities showing impact of lead paint and lead service lines

Infantile Paralysis and Clean Streets. “Children of all classes have been leaving New York by the tens of thousands during the past week to escape the dreaded infantile paralysis, which has already attacked considerably more than a thousand of them and carried off about quarter of a thousand to date. These known facts are alarming enough, but probably what gives the exodus almost the nature of a panic is the unknown-the fact that no one understands how the disease is communicated from one to another. The germ is believed to enter through the noze [sic] or mouth or both; but how it is carried is a matter of surmise. Furs and furry animals, flies, the sneezing of human beings and even contact with them are considered to be possible causes.

It is noticed that most of the cases are found amid surroundings that are below the average in cleanliness, and therefore many suspect that dirt is in some way connected with the origin of the disease. As a result, housewives are being arrested and fined by the hundred for violations of city ordinances relative to uncovered garbage cans and other collections of putrescible matters, for they rather than the street cleaning and refuse collection forces are to blame for these conditions, although these forces are being increased in number and stirred to greater activity and thoroughness; the aim being to get and keep the city as clean as possible.

Commentary: While this article is not about water directly, it tells a lot about how society was dealing with the unknown during this period. If anyone doubted that the miasma theory of disease (bad smells from decaying organic material makes people sick) was still alive and well in 1916, all they have to do is read this article. While passing mention is given to the germ causing the disease, the author falls back onto filth and dirt being the ultimate breeding place for such germs—just as in the 19th century. Parents must have been terrified that such an epidemic of unknown cause was taking away their children.

July 6, 1917: 100 year Anniversary of the National Clay Pipe Institute; 1890: Death of Edwin Chadwick

Vitrified Clay Pipe

July 6, 1917: “Clay pipe has a history that goes back millennia, with the earliest known example coming from Babylonia in 4,000 BC, according to sewerhistory.org….The clay sewer pipe industry in the United States dates back to 1815 with installations in Washington, D.C. In 1849, the first domestic clay pipe manufacturing facility was established in Middlebury, Ohio. In the years that followed, cities across the country began laying pipe systems to convey sewage away from populated areas…. Around the turn of the 20th century, it was recognized that sewer pipe standards were needed; size, strength, quality and installation methods varied widely from location to location. As a result, an ASTM Committee was formed for clay sewer pipes. Eventually, this led to the publication of Standard C13 on the Manufacture of Clay Pipe in 1917 (which is now incorporated into ASTM C700).

That same year, the Clay Products Association was formed with the merger of the International Clay Products Bureau and the Society of Vitrified Clay Pipe Manufacturers. That organization – now known as the National Clay Pipe Institute – is celebrating its 100th anniversary amidst a resurgence of vitrified clay as a preferred gravity sanitary sewer pipe.”

Edwin Chadwick

July 6, 1890: Death of Edwin Chadwick. Edwin Chadwick was an English social reformer who was noted for his work to reform the Poor Laws and improve sanitary conditions and public health. The appointment of the Poor Law Commission in 1834 which included Edwin Chadwick is widely believed to be the beginning of the sanitary movement in England. Through Chadwick’s work and influence, more sophisticated health statistics were collected which revealed that public health problems were increasing at a rapid rate. Chadwick imposed his “sanitary idea” which focused on disease prevention. A survey published by the Poor Law Commission in 1842 detailed the horrific working and living conditions in England at the time. The report linked epidemic disease, especially related to fever diseases (typhoid, typhus and cholera) to filthy environmental conditions. Privy vaults, shallow urban wells and piles of garbage and animal excrement in the streets were all related to the increases in disease.

“‘The great preventatives,’” he wrote, “‘drainage, street and house cleansing by means of supplies of water and improved sewerage, and especially the introduction of cheaper and more efficient modes of removing all noxious reuse from the towns, are operations for which aid must be sought from the science of the Civil Engineer, not from the physician, who has done his work when he has pointed out the disease that results from the neglect of proper administrative measures, and has alleviated the sufferings of the victims.’” (Rosen 1993)

Of course, the best way to identify and locate these health threats was to determine where the greatest odors of putrefaction were located and tie the solution to the problem—miasmas.

Chadwick was not ultimately successful in all he tried to do to clean up the noxious wastes in London and other concentrations of population in England. However, he did have a profound influence on a series of laws that were passed in the mid to late 1800s which began to implement some of his vision. (Rosen 1993) The formation of boards of health and the appointment of health officers under these laws provided advocates for cleaning up the filth.

It is a common misconception among chroniclers of the time period, 1850 to 1900, that the act of installing sewers, in and of itself, was an effective public health protection strategy. Edwin Chadwick was one of the major proponents of this misconception. In the 1840s he became one of the leaders of the European Sanitary Movement. In his famous report published in 1842, Chadwick promoted four themes:

  • Relationship of unsanitary living conditions and disease (based on the miasma theory)
  • Economic effects of poor living conditions
  • Social effects of poor living conditions (e.g., drunkenness, immorality, disease)
  • Need for new administrative systems to effect changes (Halliday 2001)

Chadwick had a vision of vast sewer systems collecting human waste and transporting it out to rural areas where it would be put to beneficial use as fertilizer for farms. Water supply would be provided to cities through a piped water system from protected sources that were not affected by any locale’s sewage. Unfortunately, only one out of three parts of Chadwick’s vision were implemented in London and elsewhere. Sewers were built but the crucial sanitary disposal of human waste on farmland was not. Sewage was discharged into rivers and lakes after which time no surface supplied drinking water was safe.

References:

Halliday, Stephen. 2001. The Great Stink of London: Sir Joseph Bazalgette and the Cleansing of the Victorian Metropolis. London, U.K.: History Press.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Rosen, George. 1993. A History of Public Health. Expanded Edition, Baltimore, Md.: Johns Hopkins University.

#TDIWH—January 31, 1941: Death of Charles V. Chapin

Charles V. Chapin

Charles V. Chapin

January 31, 1941: Charles V. Chapin dies. “Charles Value Chapin (January 17, 1856 – January 31, 1941 in Providence) was a pioneer in public-health practice, serving as one of the Health Officers for Providence, Rhode Island between 1884 and 1932. He also served as President of the American Public Health Association in 1927. His observations on the nature of the spread of infectious disease were dismissed at first, but eventually gained widespread support. His book, The Sources and Modes of Infection, was frequently read in the United States and Europe. The Providence City Hospital was renamed the Charles V. Chapin Hospital in 1931 to recognize his substantial contributions to improving the sanitary condition of the city of Providence.”

From a draft of The Chlorine Revolution: (McGuire 2013)

In the U.S., Charles V. Chapin was responsible more than any one person for instituting the progressive aspects of the public health movement, but he started his career when miasmas dominated beliefs in disease transmission. In a paper published in the American Journal of Public Health in 1909, he recalled his early career and the incredible ideas that were believed at that time.

“The foul emanations from decomposing organic matter were sucked up from cellars by the warm air of the house and carried sickness and death…Air was the chief vehicle of infection, nay, it was infection itself. The emanations from cellars and untidy cupboards which dealt death and destruction through the house have been referred to, as well as the more specific effluvia which gave rise to yellow fever, consumption, and diphtheria.” (Chapin 1915)

In 1884, the appointment of Charles V. Chapin as Superintendent of Health for the City of Providence, Rhode Island was one of the milestones that can be noted in making boards of health more professional. Much has been written about his career, but it was his assumption of the duties of Superintendent of Health that defined his contribution to public health. He was trained as a physician but Chapin became instrumental in improving not only medical education but also the education of public health specialists. Chapin is one of the best examples of the new professionals who bridged the period from miasma to germ theory. He had been trained in the arts of fumigation and cleaning the streets to remove filth. He was obtaining his medical education just as the age of bacteriology was dawning. He had taken courses in the new bacteriology and had followed the publications of Robert Koch in Germany who had identified the tubercle bacillus and the bacillus comma that caused cholera. In addition, Chapin adopted and used Koch’s new laboratory technique called the plate method to quantify the number of bacteria present in a water supply.

Unlike many health officers who were confused by the seeming conflicts between the worlds of miasmas and germs, Chapin integrated the two and devised a new approach to public health protection. “He was one of a few in America before 1885 who followed the English sanitarian John Simon in pointing out that the danger from filth was not in the stench but in specific disease germs….For many good reasons, the cleansing of the city had to go on.” (Cassedy 1962)

 

Indeed, the story of the advances in public health during the 1890s and early 1900s could be nothing more than a recitation of Chapin’s biography. That task has already been brilliantly done by James H. Cassedy in his book about Charles V. Chapin. (Cassedy 1962)

“Chapin’s efforts to improve the sanitary environment of his city were valuable to sanitarians across the country. But he was impatient with much of this work. He had early realized that cleansing of the physical environment was, by itself, insufficient for improving the public health. Minimizing the broad dogmas of the filth theory from the first, and concentrating on the truly dangerous forms of filth, Chapin progressively deemphasized nuisances that had no direct or demonstrable connection with disease and avoided much of the tedious routine of nuisance abatement….Attuning himself to the age of bacteriology, he turned from general measures against disease to specific measures against particular diseases.”(Cassedy 1962)

Disinfection of households which held victims of infectious diseases was one of the lingering effects of the miasma theory. In 1902, Leal discussed the useful and ridiculous aspects of disinfection of a diseased household after the removal of the infected person.

“Disinfection, then, is the process of destroying such infection by the destruction of the disease germs there existing…Too often, however, it is intrusted (sic) to one whose training possibly has made capable of distinguishing a pile of filth or an unpleasant odor, but who as no true conception of the cause of the disease, how it is possible to destroy it, and the means to be employed. In such hands it is more a ceremony of incantation than a scientific process.” (emphasis added) (Leal 1902)

Ceremonies of incantation persisted for decades. Chapin lamented in a paper published in 1923 that cities were loath to give up what he called “terminal disinfection” which referred to the disinfection of surfaces or the atmosphere in a dwelling where a person has died from a contagious disease or had recovered from such a disease. He emphasized that by the time of his writing, everyone was pretty sure that contagious diseases were spread by people (and their emanations) and not things. Swabbing a house down with formaldehyde, burning sulfur or heating pans of chloride of lime provided impressive special effects, but were of little use to prevent transmission of epidemic diseases. (Chapin 1923)

Yet, cities felt compelled to continue the tradition because it was ingrained in the public psyche and the public expected it. Providence, Rhode Island stopped terminal disinfection for diphtheria cases in 1905 but it was not until 1908 that Chapin was able to stop terminal disinfection for scarlet fever cases. In 1913, New York City eliminated virtually all terminal disinfection and many other cities followed suit. (Chapin 1923) Part of the resistance to eliminating terminal disinfection was public relations, but a huge part of the problem was that there was a deeply ingrained belief that if someone was sick, they probably infected the air and the bad air had to be cleansed.

The work on mechanical filtration done in Providence, Rhode Island, over the period 1892 to 1894, seldom gets the credit it deserves for marking advances in the science of drinking water filtration. (Swarts 1895) After an epidemic of typhoid in Providence in 1888, Charles V. Chapin began to seriously investigate filtration for use on the City’s water supply. “This Providence experimentation provided the first careful tests anywhere of the mechanical type of water filtration.” (Cassedy 1962) In a paper published by Chapin, bacteria removals were typically 98.7 percent. Chapin recommended that mechanical filtration be installed on the source of supply for Providence. (Chapin 1895) However, the City Council was not ready for such a new technology. A slow sand filter was installed instead. (Cassedy 1962)

Commentary: I knew nothing about Charles V. Chapin when I started writing The Chlorine Revolution. After seeing his name pop up in many contexts dealing with the new public health movement, I read his autobiography. He was an extraordinary individual who did more than most to modernize public health efforts in the U.S.

References:

Cassedy, James H., Charles V. Chapin and the Public Health Movement. Cambridge: Harvard University Press, 1962.

Chapin, Charles V. 1895. “The Filtration of Water.” The Medical News. 66 (January 5, 1895): 11-4.

Chapin, Charles V. 1915. “Truth in Publicity.” American Journal of Public Health. 5 (June 1915): 493-502, In Papers of Charles V. Chapin, M.D. Clarence L. Scamman ed., New York:Oxford, 1934, 13-9.

Chapin, Charles V. 1923. “Disinfection in American Cities.” The Medical Officer (London). 30 (November 17, 1923): 232-3, In Papers of Charles V. Chapin, M.D. Clarence L. Scamman ed., New York:Oxford, 1934, 92-5.

Leal, John L. 1902. “Facts vs. Fallacies of Sanitary Science,” Eleventh Biennial Report of the Board of Health of the State of Iowa for the Period Ending June 30, 1901. Des Moines:Iowa, 129-40, from The Christian Advocate. New York, August 21, 1902.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Swarts, Gardner T. 1895, “Discussion on the Foregoing Group of Papers From ‘The Cart Before the Horse’ to ‘The Report of the Committee on the Pollution of Water Supplies,’ Inclusive.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 83-4.

#TDIWH—January 24, 1876: Hemlock Lake Water Supply; 1972: Vincent B. Nesfield Dies; 1800: Birth of Edwin Chadwick

Hemlock Lake

Hemlock Lake

January 24, 1876: Glory! Hemlock Water at Last! “So proclaimed the [Rochester, NY] newspaper headline on January 24, 1876 as it announced the arrival of Hemlock Lake water into Mt. Hope Reservoir (today named Highland Reservoir). Finally, after more than three decades of political bickering and aborted construction attempts, Rochester had an abundant supply of pure wholesome drinking water. While an asset such as this may barely raise an eyebrow today, in 1876 this was truly a glorious event for the 70,000 citizens of Rochester.

In the era before the arrival of Hemlock water, wells and cisterns were the only source of drinking water. For the average resident, one well or cistern was shared by several families. Not surprisingly, the water quality of these wells was terrible in a city honeycombed with cesspools and privies. The author of an 1875 Board of Health report stated that, “We have few wells in our city that are fit for use, and in the densely populated portion they are almost without exception, absolutely unfit.” Diseases such as dysentery, cholera and typhoid were widespread. Periods of drought amplified these hardships”

0124 VB NesfieldJanuary 24, 1972: Vincent B. Nesfield dies. Nesfield was the first person to use chlorine gas under pressure to disinfect drinking water. In 1903, Lieutenant Vincent B. Nesfield of the British Indian Medical Services published a remarkable paper in a British public health journal. (Nesfield 1903) In the paper, he described his search for a chemical disinfectant to purify drinking water that would be suitable for use in the field as part of a military campaign. He came up with the idea of producing chlorine gas by electrolytic cells and then compressing the gas with 6 atmospheres of pressure until it liquefied which facilitated its storage in lead-lined steel tanks that held about 20 pounds of liquid chlorine. He treated 50 gallon batches of water by submerging the gas valve of the chlorine cylinder and opening it slightly to bubble the chlorine gas into the water.

In a later paper, Nesfield stated that about 5.4 mg/L of chlorine (2 grams per 100 gallons) killed all typhoid and cholera bacteria. After a 5-minute contact time, he added sodium sulphite to the treated water to remove the excess chlorine and prevent taste problems. (Nesfield 1905) To say that he was ahead of his time is a vast understatement. It would be 7 years before liquid chlorine in pressurized cylinders was widely available in the U.S. for water utilities to use as an alternative to chloride of lime.

Passing references to Nesfield’s unique treatment method can be found in some publications in the early 20th century. In a discussion of two papers on chlorination of water and sewage in 1911, Dr. L.P. Kinnicutt mentioned Nesfield’s liquid chlorine addition method and went on to describe an iodine tablet developed by Nesfield that was more portable (and undoubtedly caused more taste problems). Therefore, there was at least some early knowledge in the U.S. of the use of liquid chlorine to disinfect drinking water. There was one mention of Nesfield’s system of purification in a 1920 encyclopedia section on water supply. (Hill 1920) A note in a journal devoted to tropical medicine in 1907, described how successful chlorination was for a unit of the British colonial army marching toward Agra. (Pure Water 1907)

There was limited mention of Nesfield and his groundbreaking work on chlorine disinfection in histories of drinking water disinfection. In Race’s remarkable 1918 book on chlorination of water, he gave Nesfield credit for the first use of liquefied chlorine for the disinfection of water. (Race 1918) Baker devoted a few sentences to Nesfield’s contributions. (Baker 1981) In a later summary of the progress of drinking water disinfection in 1950, Race again gave credit for Nesfield’s unique application of chlorine technology. (Race 1950)

References:

Baker, Moses N. 1981. The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver, Co.: American Water Works Association.

Hill, Henry W. 1920. “Water Supply: For Municipal, Domestic and Potable Purposes, Including Its Sources, Conservation, Purification and Distribution.” In The Encyclopedia Americana, 39–65.

Nesfield, Vincent B. 1903. “A Chemical Method of Sterilizing Water Without Affecting its Potability.” Public Health. 15(7): 601–3.

Nesfield, Vincent B. 1905. “A Simple Chemical Process of Sterilizing Water for Drinking Purposes for Use in the Field and at Home.” The Journal of Preventive Medicine. 8: 623-32.

“Pure Water.” 1907. Journal of Tropical Medicine and Hygiene. 10(January 15): 30.

Race, Joseph. 1918. Chlorination of Water. New York City, N.Y.: John Wiley & Sons.

Race, Joseph. 1950. “Forty Years of Chlorination: 1910–1949.” Journal Institution of Water Engineers. 4: 479–505.

Edwin Chadwick

Edwin Chadwick

January 24, 1800: Edwin Chadwick is born. Edwin Chadwick was an English social reformer who was noted for his work to reform the Poor Laws and improve sanitary conditions and public health. The appointment of the Poor Law Commission in 1834 which included Edwin Chadwick is widely believed to be the beginning of the sanitary movement in England. Through Chadwick’s work and influence, more sophisticated health statistics were collected which revealed that public health problems were increasing at a rapid rate. Chadwick imposed his “sanitary idea” which focused on disease prevention. A survey published by the Poor Law Commission in 1842 detailed the horrific working and living conditions in England at the time. The report linked epidemic disease, especially related to fever diseases (typhoid, typhus and cholera) to filthy environmental conditions. Privy vaults, shallow urban wells and piles of garbage and animal excrement in the streets were all related to the increases in disease.

“‘The great preventatives,’” he wrote, “‘drainage, street and house cleansing by means of supplies of water and improved sewerage, and especially the introduction of cheaper and more efficient modes of removing all noxious reuse from the towns, are operations for which aid must be sought from the science of the Civil Engineer, not from the physician, who has done his work when he has pointed out the disease that results from the neglect of proper administrative measures, and has alleviated the sufferings of the victims.’” (Rosen 1993)

Of course, the best way to identify and locate these health threats was to determine where the greatest odors of putrefaction were located and tie the solution to the problem—miasmas.

Chadwick was not ultimately successful in all he tried to do to clean up the noxious wastes in London and other concentrations of population in England. However, he did have a profound influence on a series of laws that were passed in the mid to late 1800s which began to implement some of his vision. (Rosen 1993) The formation of boards of health and the appointment of health officers under these laws provided advocates for cleaning up the filth.

It is a common misconception among chroniclers of the time period, 1850 to 1900, that the act of installing sewers, in and of itself, was an effective public health protection strategy. Edwin Chadwick was one of the major proponents of this misconception. In the 1840s he became one of the leaders of the European Sanitary Movement. In his famous report published in 1842, Chadwick promoted four themes:

  • Relationship of unsanitary living conditions and disease (based on the miasma theory)
  • Economic effects of poor living conditions
  • Social effects of poor living conditions (e.g., drunkenness, immorality, disease)
  • Need for new administrative systems to effect changes (Halliday 2001)

Chadwick had a vision of vast sewer systems collecting human waste and transporting it out to rural areas where it would be put to beneficial use as fertilizer for farms. Water supply would be provided to cities through a piped water system from protected sources that were not affected by any locale’s sewage. Unfortunately, only one out of three parts of Chadwick’s vision were implemented in London and elsewhere. Sewers were built but the crucial sanitary disposal of human waste on farmland was not. Sewage was discharged into rivers and lakes after which time no surface supplied drinking water was safe.

References:

Halliday, Stephen. 2001. The Great Stink of London: Sir Joseph Bazalgette and the Cleansing of the Victorian Metropolis. London, U.K.: History Press.

Rosen, George. 1993. A History of Public Health. Expanded Edition, Baltimore, Md.: Johns Hopkins University.

July 13, 1916: Required to Use Lead Pipes and Polio Connection to Clean Streets

Blood lead levels of children in Pennsylvania cities showing impact of lead paint and lead service lines

Blood lead levels of children in Pennsylvania cities showing impact of lead paint and lead service lines

July 13, 1916: Municipal Journal articles.

Enforce Use of Lead Service Pipes. “Philadelphia, Pa.-To preserve the water supply and to help keep the streets of the city in proper condition, chief Carlton T. Davis of the bureau of water has announced that all private pipe carrying water from the public mains in the streets to buildings must be of lead from the main to the stop at the curb. The issuance of the order is possible because of the enactment of a recent ordinance by councils. At present, according to Chief Davis, about two thousand service pipes develop leaks under the paved roadways each year. This means that the water bureau loses water, the householder is subject to annoyance and the public is inconvenienced by the digging up of the streets. The bulk of service pipe leaks are caused by the use of improper material which is quickly corroded. There are more than 350,000 service pipes in use. A great many of these are of lead and give no trouble. The ordinance just passed gives the chief of the bureau of water the power to enforce the use of proper pipes.”

Commentary: I was unaware of such an ordinance in Philadelphia. I have found that dozens of other cities had similar ordinances. I have been told that the State of Pennsylvania required lead service lines early in the 20th century. In 1897, Flint, Michigan passed an ordinance requiring the installation of lead service lines. What a calamity for drinking water consumers. We are reaping the whirlwind of such decisions many years later. The graphic above shows the impact of lead exposure (paint and water) on children’s blood lead levels in 20 Pennsylvania cities (taken from a 2014 report).

Infantile Paralysis and Clean Streets. “Children of all classes have been leaving New York by the tens of thousands during the past week to escape the dreaded infantile paralysis, which has already attacked considerably more than a thousand of them and carried off about quarter of a thousand to date. These known facts are alarming enough, but probably what gives the exodus almost the nature of a panic is the unknown-the fact that no one understands how the disease is communicated from one to another. The germ is believed to enter through the noze [sic] or mouth or both; but how it is carried is a matter of surmise. Furs and furry animals, flies, the sneezing of human beings and even contact with them are considered to be possible causes.

It is noticed that most of the cases are found amid surroundings that are below the average in cleanliness, and therefore many suspect that dirt is in some way connected with the origin of the disease. As a result, housewives are being arrested and fined by the hundred for violations of city ordinances relative to uncovered garbage cans and other collections of putrescible matters, for they rather than the street cleaning and refuse collection forces are to blame for these conditions, although these forces are being increased in number and stirred to greater activity and thoroughness; the aim being to get and keep the city as clean as possible.

Commentary: While this article is not about water directly, it tells a lot about how society was dealing with the unknown during this period. If anyone doubted that the miasma theory of disease (bad smells from decaying organic material makes people sick) was still alive and well in 1916, all they have to do is read this article. While passing mention is given to the germ causing the disease, the author falls back onto filth and dirt being the ultimate breeding place for such germs—just as in the 19th century. Parents must have been terrified that such an epidemic of unknown cause was taking away their children.

July 6, 1890: Death of Edwin Chadwick

Edwin Chadwick

Edwin Chadwick

July 6, 1890: Death of Edwin Chadwick. Edwin Chadwick was an English social reformer who was noted for his work to reform the Poor Laws and improve sanitary conditions and public health. The appointment of the Poor Law Commission in 1834 which included Edwin Chadwick is widely believed to be the beginning of the sanitary movement in England. Through Chadwick’s work and influence, more sophisticated health statistics were collected which revealed that public health problems were increasing at a rapid rate. Chadwick imposed his “sanitary idea” which focused on disease prevention. A survey published by the Poor Law Commission in 1842 detailed the horrific working and living conditions in England at the time. The report linked epidemic disease, especially related to fever diseases (typhoid, typhus and cholera) to filthy environmental conditions. Privy vaults, shallow urban wells and piles of garbage and animal excrement in the streets were all related to the increases in disease.

“‘The great preventatives,’” he wrote, “‘drainage, street and house cleansing by means of supplies of water and improved sewerage, and especially the introduction of cheaper and more efficient modes of removing all noxious reuse from the towns, are operations for which aid must be sought from the science of the Civil Engineer, not from the physician, who has done his work when he has pointed out the disease that results from the neglect of proper administrative measures, and has alleviated the sufferings of the victims.’” (Rosen 1993)

Of course, the best way to identify and locate these health threats was to determine where the greatest odors of putrefaction were located and tie the solution to the problem—miasmas.

Chadwick was not ultimately successful in all he tried to do to clean up the noxious wastes in London and other concentrations of population in England. However, he did have a profound influence on a series of laws that were passed in the mid to late 1800s which began to implement some of his vision. (Rosen 1993) The formation of boards of health and the appointment of health officers under these laws p6rovided advocates for cleaning up the filth.

It is a common misconception among chroniclers of the time period, 1850 to 1900, that the act of installing sewers, in and of itself, was an effective public health protection strategy. Edwin Chadwick was one of the major proponents of this misconception. In the 1840s he became one of the leaders of the European Sanitary Movement. In his famous report published in 1842, Chadwick promoted four themes:

  • Relationship of unsanitary living conditions and disease (based on the miasma theory)
  • Economic effects of poor living conditions
  • Social effects of poor living conditions (e.g., drunkenness, immorality, disease)
  • Need for new administrative systems to effect changes (Halliday 2001)

Chadwick had a vision of vast sewer systems collecting human waste and transporting it out to rural areas where it would be put to beneficial use as fertilizer for farms. Water supply would be provided to cities through a piped water system from protected sources that were not affected by any locale’s sewage. Unfortunately, only one out of three parts of Chadwick’s vision were implemented in London and elsewhere. Sewers were built but the crucial sanitary disposal of human waste on farmland was not. Sewage was discharged into rivers and lakes after which time no surface supplied drinking water was safe.

References:

Halliday, Stephen. 2001. The Great Stink of London: Sir Joseph Bazalgette and the Cleansing of the Victorian Metropolis. London, U.K.: History Press.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Rosen, George. 1993. A History of Public Health. Expanded Edition, Baltimore, Md.: Johns Hopkins University.

#TDIWH—January 31, 1941: Death of Charles V. Chapin

Charles V. Chapin

Charles V. Chapin

January 31, 1941: Charles V. Chapin dies. “Charles Value Chapin (January 17, 1856 – January 31, 1941 in Providence) was a pioneer in public-health practice, serving as one of the Health Officers for Providence, Rhode Island between 1884 and 1932. He also served as President of the American Public Health Association in 1927. His observations on the nature of the spread of infectious disease were dismissed at first, but eventually gained widespread support. His book, The Sources and Modes of Infection, was frequently read in the United States and Europe. The Providence City Hospital was renamed the Charles V. Chapin Hospital in 1931 to recognize his substantial contributions to improving the sanitary condition of the city of Providence.”

From a draft of The Chlorine Revolution: (McGuire 2013)

In the U.S., Charles V. Chapin was responsible more than any one person for instituting the progressive aspects of the public health movement, but he started his career when miasmas dominated beliefs in disease transmission. In a paper published in the American Journal of Public Health in 1909, he recalled his early career and the incredible ideas that were believed at that time.

“The foul emanations from decomposing organic matter were sucked up from cellars by the warm air of the house and carried sickness and death…Air was the chief vehicle of infection, nay, it was infection itself. The emanations from cellars and untidy cupboards which dealt death and destruction through the house have been referred to, as well as the more specific effluvia which gave rise to yellow fever, consumption, and diphtheria.” (Chapin 1915)

In 1884, the appointment of Charles V. Chapin as Superintendent of Health for the City of Providence, Rhode Island was one of the milestones that can be noted in making boards of health more professional. Much has been written about his career, but it was his assumption of the duties of Superintendent of Health that defined his contribution to public health. He was trained as a physician but Chapin became instrumental in improving not only medical education but also the education of public health specialists. Chapin is one of the best examples of the new professionals who bridged the period from miasma to germ theory. He had been trained in the arts of fumigation and cleaning the streets to remove filth. He was obtaining his medical education just as the age of bacteriology was dawning. He had taken courses in the new bacteriology and had followed the publications of Robert Koch in Germany who had identified the tubercle bacillus and the bacillus comma that caused cholera. In addition, Chapin adopted and used Koch’s new laboratory technique called the plate method to quantify the number of bacteria present in a water supply.

Unlike many health officers who were confused by the seeming conflicts between the worlds of miasmas and germs, Chapin integrated the two and devised a new approach to public health protection. “He was one of a few in America before 1885 who followed the English sanitarian John Simon in pointing out that the danger from filth was not in the stench but in specific disease germs….For many good reasons, the cleansing of the city had to go on.” (Cassedy 1962)

 

Indeed, the story of the advances in public health during the 1890s and early 1900s could be nothing more than a recitation of Chapin’s biography. That task has already been brilliantly done by James H. Cassedy in his book about Charles V. Chapin. (Cassedy 1962)

“Chapin’s efforts to improve the sanitary environment of his city were valuable to sanitarians across the country. But he was impatient with much of this work. He had early realized that cleansing of the physical environment was, by itself, insufficient for improving the public health. Minimizing the broad dogmas of the filth theory from the first, and concentrating on the truly dangerous forms of filth, Chapin progressively deemphasized nuisances that had no direct or demonstrable connection with disease and avoided much of the tedious routine of nuisance abatement….Attuning himself to the age of bacteriology, he turned from general measures against disease to specific measures against particular diseases.”(Cassedy 1962)

Disinfection of households which held victims of infectious diseases was one of the lingering effects of the miasma theory. In 1902, Leal discussed the useful and ridiculous aspects of disinfection of a diseased household after the removal of the infected person.

“Disinfection, then, is the process of destroying such infection by the destruction of the disease germs there existing…Too often, however, it is intrusted (sic) to one whose training possibly has made capable of distinguishing a pile of filth or an unpleasant odor, but who as no true conception of the cause of the disease, how it is possible to destroy it, and the means to be employed. In such hands it is more a ceremony of incantation than a scientific process.” (emphasis added) (Leal 1902)

Ceremonies of incantation persisted for decades. Chapin lamented in a paper published in 1923 that cities were loath to give up what he called “terminal disinfection” which referred to the disinfection of surfaces or the atmosphere in a dwelling where a person has died from a contagious disease or had recovered from such a disease. He emphasized that by the time of his writing, everyone was pretty sure that contagious diseases were spread by people (and their emanations) and not things. Swabbing a house down with formaldehyde, burning sulfur or heating pans of chloride of lime provided impressive special effects, but were of little use to prevent transmission of epidemic diseases. (Chapin 1923)

Yet, cities felt compelled to continue the tradition because it was ingrained in the public psyche and the public expected it. Providence, Rhode Island stopped terminal disinfection for diphtheria cases in 1905 but it was not until 1908 that Chapin was able to stop terminal disinfection for scarlet fever cases. In 1913, New York City eliminated virtually all terminal disinfection and many other cities followed suit. (Chapin 1923) Part of the resistance to eliminating terminal disinfection was public relations, but a huge part of the problem was that there was a deeply ingrained belief that if someone was sick, they probably infected the air and the bad air had to be cleansed.

The work on mechanical filtration done in Providence, Rhode Island, over the period 1892 to 1894, seldom gets the credit it deserves for marking advances in the science of drinking water filtration. (Swarts 1895) After an epidemic of typhoid in Providence in 1888, Charles V. Chapin began to seriously investigate filtration for use on the City’s water supply. “This Providence experimentation provided the first careful tests anywhere of the mechanical type of water filtration.” (Cassedy 1962) In a paper published by Chapin, bacteria removals were typically 98.7 percent. Chapin recommended that mechanical filtration be installed on the source of supply for Providence. (Chapin 1895) However, the City Council was not ready for such a new technology. A slow sand filter was installed instead. (Cassedy 1962)

Commentary: I knew nothing about Charles V. Chapin when I started writing The Chlorine Revolution. After seeing his name pop up in many contexts dealing with the new public health movement, I read his autobiography. He was an extraordinary individual who did more than most to modernize public health efforts in the U.S.

References:

Cassedy, James H., Charles V. Chapin and the Public Health Movement. Cambridge: Harvard University Press, 1962.

Chapin, Charles V. 1895. “The Filtration of Water.” The Medical News. 66 (January 5, 1895): 11-4.

Chapin, Charles V. 1915. “Truth in Publicity.” American Journal of Public Health. 5 (June 1915): 493-502, In Papers of Charles V. Chapin, M.D. Clarence L. Scamman ed., New York:Oxford, 1934, 13-9.

Chapin, Charles V. 1923. “Disinfection in American Cities.” The Medical Officer (London). 30 (November 17, 1923): 232-3, In Papers of Charles V. Chapin, M.D. Clarence L. Scamman ed., New York:Oxford, 1934, 92-5.

Leal, John L. 1902. “Facts vs. Fallacies of Sanitary Science,” Eleventh Biennial Report of the Board of Health of the State of Iowa for the Period Ending June 30, 1901. Des Moines:Iowa, 129-40, from The Christian Advocate. New York, August 21, 1902.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Swarts, Gardner T. 1895, “Discussion on the Foregoing Group of Papers From ‘The Cart Before the Horse’ to ‘The Report of the Committee on the Pollution of Water Supplies,’ Inclusive.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 83-4.