Tag Archives: New Jersey

#TDIWH—January 15, 2009: PFOA Provisional Health Advisory; 1917: Death of William J. Magie

Perfluorooctanoic acid (PFOA)

January 15, 2009:  On January 15, 2009, the USEPA set a provisional health advisory level for PFOA of 0.4 parts per billion in drinking water. “Perfluorooctanoic acid (PFOA), also known as C8 and perfluorooctanoate, is a synthetic, stable perfluorinated carboxylic acid and fluorosurfactant. One industrial application is as a surfactant in the emulsion polymerization of fluoropolymers. It has been used in the manufacture of such prominent consumer goods as Teflon and Gore-Tex. PFOA has been manufactured since the 1940s in industrial quantities. It is also formed by the degradation of precursors such as some fluorotelomers.

PFOA persists indefinitely in the environment. It is a toxicant and carcinogen in animals. PFOA has been detected in the blood of more than 98% of the general US population in the low and sub-parts per billion range, and levels are higher in chemical plant employees and surrounding subpopulations. Exposure has been associated with increased cholesterol and uric acid levels, and recently higher serum levels of PFOA were found to be associated with increased risk of chronic kidney disease in the general United States population, consistent with earlier animal studies. ‘This association was independent of confounders such as age, sex, race/ethnicity, body mass index, diabetes, hypertension, and serum cholesterol level.’”

Boonton Reservoir Hypochlorination Station

January 15, 1917:  Death of William J. Magie. In 1899, Jersey City, New Jersey contracted for the construction of a new water supply on the Rockaway River, which was 23 miles west of the City. The water supply included a dam, reservoir and 23-mile pipeline and was completed on May 4, 1904. As was common during this time period, no treatment (except for detention and sedimentation fostered by Boonton Reservoir) was provided to the water supply. City officials were not pleased with the project as delivered by the private water company and filed a lawsuit in the Chancery Court of New Jersey. Among the many complaints by Jersey City officials was the contention that the water served to the City was not “pure and wholesome” as required by the contract. William J. Magie was selected by Vice Chancellor Frederic W. Stevens to hear the second part of the case in which the use of chlorine for disinfection was a contentious issue.  One might assume that someone relatively junior might be appointed as the Special Master to hear the highly technical and excruciatingly long arguments from both sides of the case.  Not so.  William Jay Magie was one of the most revered judges of this time period.  He took the role of Special Master in 1908 after completing 8 years as Chancellor of the Court of Chancery.  Prior to that, he was a member of the New Jersey Senate (1876-1878), Associate Justice of the New Jersey Supreme Court (1880-1897) and Chief Justice of the same court from 1897 to 1900. (Marquis 1913)

“As a trial judge his cases were handled with notable success, as he had ample experience in trying causes before juries and a just appreciation of the worth of human testimony…” (Keasbey 1912) Judge Magie would need all of his powers of appreciation of human testimony in the second trial, which boiled down to which of the expert witnesses could be believed when both sides marshaled some of the most eminent doctors, scientists and engineers in the land.

Judge Magie was born on December 9, 1832 in Elizabeth, New Jersey and lived his life in that town.  He graduated from Princeton College in 1852 and studied law under an attorney in Elizabeth.  He was admitted to the bar of New Jersey in 1856.  At the time of the second trial in 1909 he was 77 years old and near the end of his distinguished career.

On May 9, 1910, William J. Magie submitted his Special Master Report. One of Magie’s findings was of critical importance to the defendants because he laid to rest the concern that chlorine was a poison that would harm members of the public who consumed the water.

“Upon the proofs before me, I also find that the solution described leaves no deleterious substance in the water. It does produce a slight increase of hardness, but the increase is so slight as in my judgment to be negligible.” (Magie, In Chancery of New Jersey, 1910)

The Special Master Report then delivered the finding that defendants had been waiting for:

“I do therefore find and report that this device is capable of rendering the water delivered to Jersey City, pure and wholesome, for the purposes for which it is intended, and is effective in removing from the water those dangerous germs which were deemed by the decree to possibly exist therein at certain times.” (emphasis added) (Magie, In Chancery of New Jersey, 1910)

Magie’s finding summarized in this one sentence approved the use of chlorine for drinking water. After this ruling, the use of chlorine for drinking water disinfection exploded across the U.S. (McGuire 2013)

In a filing after Magie’s final decree, compensation for Judge Magie was noted as $18,000 for the entire second trial with its 38 days of testimony over 14 months, dozens of briefs and hundreds of exhibits.  It must have been the hardest $18,000 he ever earned.

References:

  • Keasbey, E.Q. (1912). The Courts and Lawyers of New Jersey, 1661-1912. Vol. 3, New York:Lewis Historical Publishing Co.
  • Magie, William J. (1910). In Chancery of New Jersey: Between the Mayor and Aldermen of Jersey City, Complainant, and the Jersey City Water Supply Co., Defendant. Report for Hon. W.J. Magie, special master on cost of sewers, etc., and on efficiency of sterilization plant at Boonton, Press Chronicle Co., Jersey City, New Jersey, (Case Number 27/475-Z-45-314), 1-15.
  • Marquis, Albert N. (1913). Who’s Who in America. 7, Chicago:A.N. Marquis.
  • McGuire, Michael J. (2013). The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.
Advertisements

December 21, 1868: Birth of George Warren Fuller

George Warren Fuller, 1903, 35 years old

December 21, 1868:  Birth of George Warren Fuller in Franklin, Massachusetts. George Warren Fuller was, quite simply, the greatest sanitary engineer of his time, and his time was long—lasting from 1895 to 1934.  In truth, we have not seen his like since.  How did he reach the pinnacle of his field?  What early influences led him on his path? There is a biography of Fuller on Wikipedia that I wrote which summarizes his life from a “neutral point of view.” The material below is taken in part from Chapter 7 of The Chlorine Revolution:  Water Disinfection and the Fight To Save Lives. By design, it gives more of a personal flavor to his life.

George Warren Fuller was born in Franklin, Massachusetts on December 21, 1868—ten years after the death of Dr. John Snow and ten years after the birth of Dr. John L. Leal.  He was the son of George Newell Fuller and Harriet Martha Craig. There is not much known about his father who was simply described as a farmer.  His father was born on the Fuller family property in Franklin, Massachusetts on November 22, 1819.

Harriet Martha Craig was born on February 2, 1841, grew up near Leicester, Massachusetts, and attended Mount Holyoke College, but she did not graduate.  Her final year at the institution was 1865.  They were married on November 15, 1866 when he was 46 and she was only 25.  They settled down in the Franklin-Medway area of rural Massachusetts for a quiet life of farming on the ancestral Fuller family property.  They had two children, George W. and Mabel B. who was born in 1876.  We know that George kept in touch with his younger sister in later years.  She married Carl W. DeVoe and moved to Jerome, Idaho. George owned a ranch in Idaho and must have visited her there.

Place names in Massachusetts have changed over the past several hundred years as the land area covering certain towns changed due to the expansion and contraction of town boundaries or as a result of new towns being carved off from old ones.  Towns that figured prominently in Fuller’s history, Dedham, Franklin and West Medway, all describe the same general area, which is about 10-25 miles southwest of Boston.

We know only a little about his early education.  One report observed:

“George Warren Fuller was at the head of his class when he attended the Dedham schools. His scholarship was, of course, a source of great satisfaction to his mother. At sixteen he passed the examination for entrance at MIT but, his father having died a few weeks before, it was thought best for him to have a fourth year in high school….”

After his father’s death on May 3, 1885, his mother moved 2,500 miles away to Claremont, California where she lived until she died in 1915.  George must have felt that he had lost both parents at the same time.  We do not know if he was looking for a stable family life to replace the one he had lost, but we do know that he married when he was only two years out of high school, in 1888.  His first wife, Lucy Hunter was born in October 1869 and died far too young on March 18, 1895. Lucy came from a family who immigrated to America from New Brunswick and Prince Edward Island.  Her father was born about 1830 and listed his occupation as farmer.  Her mother, Sarah, was born about 1845.  The farming family had seven children, three boys and four girls.  They must have moved to Boston from New Brunswick sometime between 1877 and 1880.  The youngest boy, Harry, was born in New Brunswick about 1877. I recently heard from a descendant of Lucy Fuller who was researching her family. According to her second cousin, three times removed, the family was sailing from Northern Ireland to Philadelphia in 1767 when their ship was wrecked off of Nova Scotia. Lucy’s family eventually made it to Boston while many of the other Hunters moved on to Ontario, Canada.

In 1880, the U.S. census showed that her family lived in Boston at 218 Bennington Street, which is now near Boston Logan International Airport and was located near cultivated land in the late 1800s.  The address is about three miles from the MIT campus, as the crow flies.

Lucy was 18 years old and Fuller was 20 years old when they were married.  Fuller was only in his second year at university (1886-1890).  They had one son, Myron E. Fuller who was born in Boston on June 4, 1889. We do not know much about the marriage, but we do know that George W. Fuller was issued a passport on May 2, 1890 for his trip to Germany and his continued studies. There is no record that Lucy or Myron applied for a passport or accompanied Fuller to Germany.  Massachusetts death records listed her cause of death as “enteritis” which was a general term used for diseases caused by the ingestion of pathogens from food or water.  The death records listed her as “married” which meant that her marriage to Fuller was not dissolved prior to her death. There is no evidence that George W. Fuller lived with her and their son after 1889.

From a 1910 census report, it is clear that Myron lived with his father in Summit, New Jersey.  One recorded connection we know of between Myron and his father was mentioned in the preface of Fuller’s 1912 book, Sewage Disposal. Fuller acknowledged Myron (who was 22 years old at the time) for creating the index to the book.  One source showed that Fuller and McClintock employed Myron from 1911 to 1916 and again from 1919 until at least 1922. In 1918, Myron registered for the draft and listed his occupation as civil engineer. The same reference showed Myron working for the City of Philadelphia in the Bureau of Surveys—the same occupation as his great-great-great-great grandfather, Ensign Thomas Fuller.  He lived in Philadelphia with his wife and one child.

While Fuller was in Louisville working on the filtration investigations, he met Caroline L. Goodloe who came from a fine, old Louisville family.  In November 1899, Fuller married her in Louisville. They were both 31 years old when they were married.  In May of 1900, husband and wife went on a trip to Europe—a somewhat delayed honeymoon. Their son, Kemp Goodloe Fuller, was born on March 10, 1901. On November 11, 1903, while living in New York City, their second son, Asa W. Fuller was born.

We know from records published in the annual report of the APHA and other sources that Fuller had his offices in New York City at 220 Broadway for many years beginning in 1899, which was the same address given by Allen Hazen for his offices for a short period of time.

Tragically, Caroline Goodloe Fuller died in June 21, 1907, while George W. Fuller was most heavily engaged in numerous water and sewage disposal projects all over the U.S.  At her death, George W. Fuller was living at 309 West 84th Street in New York City with his wife and their sons.  She was 38 years old.

The 1910 Census form showed that Fuller was living at 160 Boulevard, Summit, New Jersey with Alice C. Goodlow (sic) who was identified as his sister-in-law, Mary L. Goodlow (sic) identified as his mother-in-law and his three sons Myron, Kemp G. and Asa.  George’s in-laws had come up from Louisville to help him raise the boys.  Also listed at the same residence was an interesting guest, Grace F. Thomson, 43, born in China of English ancestry and claiming a trade of metal working.  In addition, there were three servants (two Irish and one Greek) making it a full and busy household.  The census form showed him as widowed, so by 1910 he had not remarried.

We know from several accounts, that George Warren Fuller was, in many ways, a big man.  Physically, he was tall.  An account by a colleague said that he was over six feet tall, but passport application forms that Fuller filled out showed that his height was 5 feet 10 inches. Pictures of him from 1903 until at least 1928 showed that he was, to use a descriptor from the time, stout. One description had him at 285 pounds with a size 18 collar.

His hair was dark brown and, in the style of the day, slicked down and parted in the middle.  As time marched on, he began to gray at the temples and then the gray seemed to take over his thinning head of hair.  He was clean-shaven except for his days in Louisville during the filtration studies, when he sported a bushy mustache.  He had blue eyes that could bore into someone who did not please him and twinkle when he was trying to charm a lady.  The round spectacles that he always wore did not detract from the intensity of his blue eyes.

Commentary:  George Warren Fuller Comes to California…in 2012

On April 3 2012, I gave a talk at the California Nevada Section Conference of the American Water Works Association. I teamed up with John Marchand who gave a talk on Dr. John Snow of Broad Street Pump fame. We made a pact to give our talks in costume, which incredibly we both followed through on. Below are links to my talk broken up into three parts (YouTube restrictions). It describes Fuller’s life and the first use of chlorine on the Jersey City water supply in 1908.

Part 1:  http://youtu.be/37WZkp5148w

Part 2:  http://youtu.be/rsicrBvVMc4

Part 3:  http://youtu.be/n6PuOvjjQMI

December 20, 1987: Congressional Bill for Water Studies

December 20, 1987New York Times headline—Bill Provides Funds for Water Studies. “A $549 MILLION ground-water protection bill recently passed by the House would pay for two research projects designed to prevent the contamination of water supplies in New Jersey coastal areas with vulnerably sandy soil.

Underground drinking-water supplies near the Shore, from Hudson County to Delaware Bay, are especially susceptible to contamination from leaking gasoline tanks or leaching dump sites because of the porous nature of the soil.

The measure was sponsored by Representative Claudine Schneider, Democrat of Rhode Island. Under the legislation, which still must be voted on by the Senate and signed by President Reagan, two test cleanup programs would be conducted in the Jersey Shore area.

The tests involving New Jersey were added to the bill by Representative James J. Howard, Democrat of Spring Lake Heights, who heads the House Public Works and Transportation Committee. Of the two proposed tests, one, which would continue for 30 months, would study ways to inject specially treated water into aquifers contaminated by petroleum. Previous studies using the method showed promising results in reducing damage. The second study would be of the effects of acidic water on metal drinking-water pipes and plumbing.

‘Over the past decade,’ said Representative Dean A. Gallo, Republican of Parsippany, who voted for the bill, ‘it has become painfully apparent that ground-water protection has fallen through the regulatory cracks.’

Barker Hamill, chief of the Bureau of Safe Drinking Water of the state’s Department of Environmental Protection, said that New Jersey had been consistently tracking the quality of drinking water since early 1985 and had found problems in some communities.”

December 8, 1888: Bartlett Water Scheme; 1920: Pollution of an Artesian Well

Map showing Bartlett Scheme to export Passaic River Water to New York City

December 8, 1888:  Engineering News article—Jersey City Board of Public Works Opposed to Scheme Proposed by John R. Bartlett. “Jersey City, N. J .—At a meeting of the Board of Public Works on Nov. 3, the water supply question was still further discussed, speeches being made in favor of and opposition to the award of a contract to the syndicate represented by JOHN R. BARTLETT. The Citizens Committee has adopted the following resolution:  “Resolved, That we are unalterably opposed to Jersey City making any contract with any private water company for a supply of water In Jersey City, as such a contract might surrender our rights In the Passaic river, and place us under the worst of monopolies—a private water company. We are in favor of the reorganization of the State Board of Water Supply; that the control of the drinking water of the State be given to said Board, with a view that all the cities in the State of New Jersey may obtain in the future an abundant supply of good water….

The Bartlett water supply project was formally presented to the city of New York on Nov. 30. Briefly stated, this proposal to furnish 50 million gallons daily of water to lower New York, under a head of 300 ft., comes from a syndicate of corporations in New Jersey. The water is to be gathered from the 877 sq. miles of Passaic river water-shed, stored in a reservoir at the Great Notch near Paterson, N. J., and is to be led by pipes and tunnel under the Hudson river directly to lower New York. The advantages claimed are-abundant supply by gravity, constant fire-pressure, sales of water by the city for motive power, the saving of great mains from the Central Park Reservoir down town, and the preservation of the Croton supply for upper New York and the annexed districts. The syndicate promises a supply within 8 years from date of contract, and will charge the city $75 per million gallons, payable quarterly. The project is endorsed by responsible parties. In a later issue we will give the plan in fuller detail….

Jersey City’s new water supply is being discussed at “citizens’ meetings”, and the opportunity has not been lost by the chronic crank. The bone of contention is a proposition to furnish water, made by a private corporation, a part of the Bartlett syndicate. Last Monday’s meeting was marked by a free fight in an attempt to eject a party who interrupted the syndicate attorney and defied the presiding officer in this fight tables and chairs were smashed and the club of a policeman alone stopped the row. At a preceding meeting, threats were made of hanging to a lamp-post the promoters of a private contract. It is to be hoped, for the good name of the city, that these proceedings will be brought to an end by the more reputable and intelligent citizens calmly discussing what is really a great public need, and taking such .action as will improve the present supply, whether this improvement comes from works of their own building or from a private corporation.”

Reference: “Jersey City, N.J.” 1888. Engineering News. 20:(December 8, 1888): 458.

Commentary:  The water scheme to transfer water from the Passaic River watershed to New York City attracted tremendous support and violent opposition. Ultimately, the U.S. Supreme Court ruled against the interstate transport of water without the agreement of the state which is the source of supply.

Mohawk River near Albany, 1860

December 8, 1920: Engineering and Contracting article. Pollution of Public Water Supply by Spring Freshet. “In the spring of 1920 the engineering division of the New York State Department of Health was called upon to investigate an epidemic of gastroenteritis, followed by an outbreak of typhoid fever in the city of Schenectady, N. Y., which occurred subsequently to the gross pollution of the public water supply of the city by the water of the Mohawk River. The results of the investigation were set forth by Mr. Theodore Horton, Chief Engineer of the New York State Department of Health, in his reports to the Department….

The matter was first brought to the attention of the Division of Sanitary Engineering on March 20, 1920, when information was received that on March 15 and a few days following, the number of cases of gastroenteric disturbances in the city had greatly increased above the number normally occurring; and that this increase had followed a noticeable turbidity in the water, which had been greatest on the night of March 13 and during March 14 and had gradually disappeared after the latter date….

On April 1 the onsets of eight cases occurred, and for the next week the number of onsets ranged from two to six, the number gradually decreasing. The last case was reported as occurring on the 19th. In all there were 53 cases, 3 of which terminated fatally. The majority of the cases occurred about two weeks after the pollution of the well by the contaminated water of the river.”

Reference:  “Pollution of Public Water Supply by Spring Freshet.” 1920. Engineering and Contracting. 54:23(December 8, 1920): 562-4.

November 22, 1981: Cross Bergen Pipeline, Part of the Wanaque South Project

Wanaque Reservoir

November 22, 1981: New York Times article. New Jersey Journal. “The 17-mile, cross-Bergen pipeline that is designed to give the Hackensack Water Company badly needed reserves from the Wanaque Reservoir has hit a new snag.

Two towns along the route, Ridgewood and neighboring Midland Park, do not want their residential streets torn up for the pipeline. Alternative routes are being explored, but it is uncertain now whether agreements can be reached without disrupting the company’s plans to lay the pipes next spring and summer.

The entire water-transfer project – once called Two Bridges and now known as Wanaque South – has encountered delays and pitfalls since Hackensack Water first proposed it in the mid-1970’s.

First, hearings dragged on for months before the state gave its final approval. Next, Paterson sued to halt the project, saying that use of water from the Passaic River would dry up Paterson’s Great Falls. The State Supreme Court threw out the suit last October as the 1980 water shortage was deepening.

Then Hackensack Water said that it did not have the money to build the pipeline and the pumping stations needed to draw water from the Passaic River and pump it north into the Wanaque Reservoir for storage. As a result, the state granted Hackensack a 47 percent rate increase to overcome the financial difficulty.

Throughout the water shortage last fall and winter, Hackensack Water contended that the crisis would not have developed if the state hearings had not dragged on and Paterson had not held up the project for months.

During the delays, negotiations with the two towns about the pipeline route were apparently nonexistent. The legal and financial problems were thought to have been the final obstacles.

Why wasn’t the route question resolved earlier so that work on what the state calls its most crucial new water-supply project could begin forthwith?

”It would have been imprudent to be spending a lot of money on engineering studies without a final approval from the state in our hands,” said Martha Green, a spokesman for Hackensack Water.

The disputed Midland Park-Ridgewood portion is 3.5 miles. The towns, neither of which is served by Hackensack Water, can block the pipeline by denying the company permits to dig up local streets.

Four miles of pipeline are to pass through Paramus and Oradell, both customers of Hackensack Water, and because the utility has the water-sales franchise for them, it does not need the same street digging permit that it requires from Midland Park and Ridgewood. Neither Paramus nor Oradell has voiced objections.

The 10 remaining miles of pipeline are to run parallel to railroad rights-of-way in Pompton Lakes, Oakland and Wyckoff.”

Commentary:  No one said that improving infrastructure would be easy. Something as straightforward as building a needed pipeline is certain to bring out the “Not in My Backyard” crowd. The good news is that an article in 1985 forecast that the pipeline would be completed by 1987. Another article in 1985 stated that the incremental project has already been a huge benefit for northern New Jersey.

November 21, 2006: PFOA in Drinking Water; 1899: Garret Hobart Dies

Perfluorooctanoic acid (PFOA)

November 21, 2006:  PFOA Contaminates Drinking Water. “On November 21, 2006, the USEPA ordered DuPont company to offer alternative drinking water or treatment for public or private water users living near DuPont’s Washington Works plant in West Virginia (and in Ohio), if the level of PFOA detected in drinking water is equal to or greater than 0.5 parts per billion. This measure sharply lowered the previous action level of 150 parts per billion that was established in March 2002.[133] Perfluorooctanoic acid (PFOA), also known as C8 and perfluorooctanoate, is a synthetic, stable perfluorinated carboxylic acid and fluorosurfactant. One industrial application is as a surfactant in the emulsion polymerization of fluoropolymers. It has been used in the manufacture of such prominent consumer goods as Teflon and Gore-Tex. PFOA has been manufactured since the 1940s in industrial quantities. It is also formed by the degradation of precursors such as some fluorotelomers.

PFOA persists indefinitely in the environment. It is a toxicant and carcinogen in animals. PFOA has been detected in the blood of more than 98% of the general US population in the low and sub-parts per billion range, and levels are higher in chemical plant employees and surrounding subpopulations. Exposure has been associated with increased cholesterol and uric acid levels, and recently higher serum levels of PFOA were found to be associated with increased risk of chronic kidney disease in the general United States population, consistent with earlier animal studies. “This association was independent of confounders such as age, sex, race/ethnicity, body mass index, diabetes, hypertension, and serum cholesterol level.”

Commentary and Update:  More sensitive analytical methods and widespread monitoring have found PFOA and related compounds in 27 states according to headlines in 2016. But remember, dear reader that this was being publicized by the Environmental Working Group or EWG and must be taken with a huge grain of salt. What does parts per trillion of any chemical really mean?

November 21, 1899Death of Garret A. Hobart. “Garret Augustus Hobart (June 3, 1844 – November 21, 1899) was the 24th Vice President of the United States (1897–1899), serving under President William McKinley…. As vice president, Hobart proved a popular figure in Washington and was a close adviser to McKinley.”

While much is known about Hobart’s role as vice president, his role in the formation of private water companies and his support of these companies through legislation is less well known. Hobart was elected to the New Jersey Assembly and Senate during the early part of his career. During the 1870s and 1880s there was a lot of legislative activity that appeared to be for the benefit of private water companies.

In 1881, one bill that was introduced by Garret A. Hobart, then a state senator, was designed to give private water companies the power to acquire and distribute water resources independent of municipal or state control.  While not explicitly stated, the bill purportedly had a single intention of giving one company, the Passaic Water Company, more power to access water supplies to prevent water shortages at the factories of Paterson which were forced to idle production in the summer season.

The bill was not successful, (New York Times, March 22, 1881) which was undoubtedly due in part to the widespread suspicion that the bill would grant powers to companies to export New Jersey water supplies to New York.  “[New York speculators] have been attracted by the magnificence and extent of New Jersey’s water-shed, and by the sweetness and purity of its waters.  Last year’s scheme was said to be intended to enable the tapping of New Jersey’s hills for the New York supply.”(New York Times, March 7, 1881)

Hobart was a resident of Paterson, New Jersey for most of his life. In 1885, Garret A. Hobart joined the Board of the Passaic Water Company and two years later was elected President of the Company.  Hobart was described in one source as representing a syndicate of New York capitalists. (Nelson and Shriner 1920) The company had been supplying Paterson and the surrounding area since 1857.

The East Jersey Water Company was formed on August 1, 1889 for the stated purpose of supplying Newark, New Jersey with a safe water supply.  All of the men who were shareholders of the new company (including Hobart) were identified with the Lehigh Valley Railroad Company.(New York Times, August 2, 1889) However, the company’s vision extended far beyond a water supply for Newark. The company began as a confidential syndicate composed of businessmen who were interested in executing grand plans for water supply in northern New Jersey and New York City. (Colby and Peck 1900) Nothing came of these grand plans.

Hobart was also a mentor to John L. Leal of Paterson and encouraged Leal to leave city employment and work full time as the sanitary advisor to several private water companies.(McGuire 2013)

“Hobart died on November 21, 1899 of heart disease at age 55; his place on the Republican ticket in 1900 was taken by New York Governor Theodore Roosevelt.”

References:

Colby, Frank M. and Harry T. Peck eds. The International Year Book—A Compendium of the World’s Progress During the Year 1899. n.p.:Dodd, Mead and Co., 1900.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Nelson, William and Charles A. Shriner. History of Paterson and Its Environs. Vol. 2, New York:Lewis Historical Publishing Company, 1920.

New York Times. “Jersey’s Water Supplies—Senator Hobart’s Bill and Its Effect.” March 7, 1881.

New York Times. “New Jersey’s Law Makers—Mr. Hobart’s Water Bill Killed.” March 22, 1881.

New York Times. “To Give Newark Water.” August 2, 1889.

November 12, 1881: Paterson, NJ Water Supply; 1732: Pitot Tube Invention

Great Falls at Paterson, New Jersey

November 12, 1881: Article in Engineering News—The History and Statistics of American Water-Works. “Paterson, New Jersey, is on the Passaic River, about 16 miles NW of New York City, at the point where the river breaks through the great trap-dyke called the Watchung or Orange Mountain, and falls 80 ft. The water power afforded by this fall with a water-shed of 855 square miles above it, was purchased in 1791 ‘by the Society for the Encouragement of Useful Manufactures,’ and is still controlled by them. A dam across the river a short distance above the falls diverts the water into a canal, from which it is drawn to furnish power to 13 manufacturing establishments.

Water-works were built in 1856 by a private company, taking the supply from the river at the edge of the falls and below the Society’s dam. The surplus flow of the river passing over the dam was used for power and for supply. A turbine wheel was placed in a rift in the face of the falls, which, being erected over the masonry made a tail race. The wheel drove a piston pump which forced the water into a small reservoir on an eminence in the city. As the consumption increased, the amount of water in the river which was not used for mill purposes was insufficient for motive power and supply, notwithstanding the erection by the company of a small stone dam along the face of the falls, making a little pool for storage below the Society’s dam. In 1878, a Worthington high-pressure engine and pump of 8,000,000 gallons’ capacity were erected. The original pumps driven by water force have been replaced by others. There are now two horizontal pumps with a combined capacity of 14,000,000 gallons per day, and one with 2,000,000 capacity. There are three reservoirs, built in excavation and embankment, supplying different levels of the city. Their capacities are, respectively, 8, 8, and 2,000,000 gallons.”

Reference: Croes, J. James. “The History and Statistics of American Water-Works.” Engineering News. 8 (November 12, 1881): 459.

CommentaryThe water supply for Paterson figures prominently in my book, The Chlorine Revolution, which was published in April 2013. Dr. John L. Leal was the Public Health Officer for Paterson from 1890 to 1899 and he was responsible for the safety of this water supply. In 1899 because of increasing contamination of the Passaic River, the water supply withdrawal point was moved 5 miles upstream to Little Falls.

Different Early Versions of the Pitot Tube

November 12, 1732Today in Science History. “In 1732, Henri Pitot read a paper to the Royal Academy of Sciences in Paris about an instrument he had invented to measure the flow velocity at different depths of water in the River Seine. It had a scale and two open vertical glass tubes on a wood frame. The lower end of one pointed down, the other bent at 90º facing the flow. The belief of the time was that flow velocity at a given depth was proportional to the mass above it, meaning increasing velocity at greater depth. Recording the difference in liquid levels in the two tubes, he showed the opposite was true. Henri Darcy improved the design, with the support of Henri Bazin.”