Tag Archives: New Jersey

March 13, 1914: Death of John L. Leal

Dr. John L. Leal

March 13, 1914: Death (in Paterson, NJ) of John L. Leal, physician and water treatment expert who pioneered chlorine disinfection in the U.S. There are many unsung heroes who contributed significantly to public health at the turn of the 20th century. John L. Leal is one of them and after reading this, I think you will agree that he did more than most to save people’s lives.

John L. Leal was born in the small town of Andes, New York on May 5, 1858. His father, John Rose Leal was a physician who joined the 144th Regiment, New York Volunteers and fought in the Civil War. During the siege of Charleston, South Carolina, John Rose Leal contracted what was most likely a case of amoebic dysentery from contaminated drinking water. He suffered from the disease for more than 17 years before he finally died of it in 1882.

John L. Leal attended Princeton College and graduated in 1880. He went on to Columbia College of Physicians and Surgeons finishing his medical education in 1883. He opened a medical practice in Paterson, New Jersey and went to work for the Paterson Board of Health where he remained until 1899. He left City employment and became the sanitary adviser to private water companies including the East Jersey Water Company and the Jersey City Water Supply Company. In 1888, he married Amy L. Arrowsmith and they had one son, Graham, later that year. So far, his life was well spent but not exemplary.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses. The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1909 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on a large-scale basis or over any continuous time period.

But, there was a problem. The public feared chemicals in their food, medicines and water. Adulteration of food and medicines was rampant during this period, which was faithfully catalogued in Upton Sinclair’s The Jungle.

“How could they know that the pale-blue milk that they bought around the corner was watered, and doctored with formaldehyde besides?. . .How could they find out that their tea and coffee, their sugar and flour, had been doctored; that their canned peas had been colored with copper salts, and their fruit jams with aniline dyes?”(1)

At any conference of water professionals in the late 19th and early 20th centuries, strong language was used to oppose chemical disinfection. Even George W. Fuller early in his career was not supportive of chemical disinfectants.

1893, George Warren Fuller: “While chemicals have been of much aid in surgery by bringing about antisepsis and asepsis, it is very improbable that people would allow their drinking water to be drugged with chemicals, even with the view of removing dangerous bacteria–indeed, such a method might prove very dangerous in many cases.”(2)

1894, Thomas M. Drown: “…the idea itself of chemical disinfection is repellent.”(3)

1904, George C. Whipple: “Thus in St. Louis the popular prejudice against the use of alum in clarifying the water is said to be so intense that a local engineer has said ‘it is very doubtful if alum could be used, no matter how excellent the results which might be obtained.’. . .‘We don’t want to drink puckered water.’”(4)

1906, George C. Whipple: “The idea of adding poisonous chemicals [like chlorine] to water for the purpose of improving its quality for drinking purposes has generally been considered as illogical and unsafe. . .”(5)

1906, William P. Mason: “I very much question if the public at large would be willing to disinfect water to-day. We are scarcely driven that far yet.”(6)

1906, P.A. Maignen: “Among the so-called ‘disinfectants’ tried may be cited copper, chlorine and oxalic acid. . .Such poisonous materials should not be permitted to be used on water intended for public supplies.”(7)

Nonetheless, Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward. Where he found the courage to follow the path of chemical disinfection when all of the experts railed against it is not known for certain. His father’s gruesome illness and death and the unnecessary deaths he personally observed as Health Officer for Paterson must have contributed to his decision.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2012, marks the 104th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

In a second trial, the court vindicated Leal’s decision. Afterwards, the use of chlorine spread like wildfire throughout the U.S. Typhoid fever death rates plummeted and children under one year of age stopped dying by the hundreds of thousands.

John L. Leal was not a physically imposing figure. Photographs of him show a man of average height and build with a kind face. Nothing in his appearance hinted at the steel spine and dogged courage that he possessed. One definition of the word hero reads: “a man of distinguished courage or ability, admired for his brave deeds and noble qualities.” These days, many people feel that the word hero has been overused in this country. I think that promoting a water treatment process that saves millions of lives qualifies Leal to be known as a Hero of Public Health.

Why doesn’t everyone know about Leal? Another man, George A. Johnson was wrongly given the credit for the idea of chlorinating the water supply for Jersey City. Johnson was able to get away with his charade, in part, because John L. Leal died on March 13, 1914, and Johnson lived for another 20 years.

Still not convinced? Read The Chlorine Revolution: Water Disinfection and the Fight to Save Lives which was published in April 2013.(8)

Grave Monument for Dr. Leal


(1) Sinclair, Upton. The Jungle: With an Afterword by Emory Elliott. New York:Signet Classic, 1990, original copyright 1905, originally published in 1904.

(2) Fuller, George W. “Sand Filtration of Water, with Special Reference to Results Obtained, at Lawrence, Massachusetts.” In American Public Health Association, Public Health Papers and Reports. Vol. 20, Columbus, OH:APHA, 64-71. 1895.

(3) Drown, Thomas M. “The Electrical Purification of Water.” Journal NEWWA. 8 (1894): 183-7.

(4) Whipple, George C. Discussion of “Purification of Water for Domestic Use.” Transactions ASCE. 54:Part D (1905): 192-206.

(5) Whipple, George C. “Disinfection as a Means of Water Purification.” Proceedings AWWA. (1906): 266-80.

(6) Mason, William P. “Discussion.” Proceedings AWWA. (1906): 282-3.

(7) Maignen, P.A. “Discussion.” Proceedings AWWA. (1906): 285-6.

(8) McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, Colorado:American Water Works Association. 2013.


March 5, 1914: East Jersey Water Company Taken Over by New Jersey

About 1925. The old Morris Canal being destroyed at Little Falls, showing the treatment plant in the background

March 5, 1914: Municipal Journal article. N. J. Municipalities Will Act on Water Supply Purchase. “Passaic, N. J.-A conference between the New Jersey Water Supply Commission and representatives of nearly fifteen municipalities in the state has been held in the City Hall in Paterson for the purpose of discussing the proposed plan that the state take over the East Jersey Water Company and its subsidiaries. Although the meeting did not commit itself to any definite plan, the consensus of opinion seemed to be in favor of state ownership. Among the municipalities represented were Paterson, Passaic, Newark,

Montclair, Nutley, Glen Ridge, Totowa, Hawthorne and Elizabeth. The following resolution adopted explains fully the advances towards state ownership, made at the meeting: “Resolved, That the State Potable Water Supply Commission at once draw up and present to each municipality interested a complete proposition covering the subject, showing in detail the costs to be assumed by each municipality, and an estimate of fixed charges of operation by the state commission and also secure from the East Jersey Water Company the best proposition obtainable, and that each municipality take prompt action in the matter and meet in the City Hall, in Paterson, April 3, at 1 P. M.” As has been stated in a recent issue of Municipal Journal, the East Jersey Water Company has offered to turn over its plants and the plants of its subsidiaries to the state, provided that the state assume all the obligations of the company, $7,500,000 in outstanding bonds, and borrow the $1,300,000 needed for maintenance from the company. State appraisers have estimated the value of the plants at between $8,000,000 and $9,000,000.

Reference: “N. J. Municipalities Will Act on Water Supply Purchase.” 1914. Municipal Journal. 36:10(March 5, 1914): 333.

Commentary: And so the might have fallen. The article does not mention the reason for the takeover. At the turn of the 20th century, the EJWC was a powerful force that built the treatment plant at Little Falls shown in the photograph above (designed by George Warren Fuller).

March 1, 1993: Milwaukee Crypto Outbreak; 1930: Death of Clemens Herschel

Depiction of Cryptosporidium parvum oocysts excystation in the gut

March 1, 1993:  Outbreak of cryptosporidiosis in Milwaukee, WI. From this date until April 28 is generally regarded as the duration of the outbreak of the disease.  People in the area receiving the water began getting sick during this period and soon emergency rooms and doctors’ offices were overtaxed.  It has been estimated that over 400,000 people were sickened and over 100 people died.

“To assess the total medical costs and productivity losses associated with the 1993 waterborne outbreak of cryptosporidiosis in Milwaukee, Wisconsin, including the average cost per person with mild, moderate, and severe illness, we conducted a retrospective cost-of-illness analysis using data from 11 hospitals in the greater Milwaukee area and epidemiologic data collected during the outbreak. The total cost of outbreak-associated illness was $96.2 million: $31.7 million in medical costs and $64.6 million in productivity losses. The average total costs for persons with mild, moderate, and severe illness were $116, $475, and $7,808, respectively. The potentially high cost of waterborne disease outbreaks should be considered in economic decisions regarding the safety of public drinking water supplies.”

Reference:  Corso, P.S. et al. 2003. “Cost of Illness in the 1993 Waterborne Cryptosporidium Outbreak, Milwaukee, Wisconsin.” Emerging Infectious Diseases. 9:4.

Commentary:  Based on the evidence I have seen, the Howard Avenue Water Purification Plant lost control of its particle removal process, which caused high concentrations of viable Cryptosporidium parvum oocysts to enter the distribution system. The only disinfectant that the water utility was using at that time was free chlorine, which is ineffective for killing this pathogen. Since the outbreak, the water treatment system in Milwaukee has been significantly upgraded. http://bit.ly/YPPGdK

March 1, 1930:  Clemens Herschel dies. “Clemens Herschel (March 23, 1842 – March 1, 1930) was an American hydraulic engineer. His career extended from about 1860 to 1930, and he is best known for developing the Venturi meter, which was the first large-scale, accurate device for measuring water flow.

Clemens was born in Boston, Massachusetts, and spent most of his life practicing his profession in New York and New Jersey. He attended Harvard University, where he received his bachelor of science degree in 1860 from the Lawrence Scientific School. After Harvard, he completed post-graduate studies in France and Germany.

The first part of Herschel’s career was devoted to bridge design, including the design of cast-iron bridges. For a time, he was employed on the sewerage system of Boston. Herschel was influenced by James B. Francis, who was the agent and engineer of the Proprietors of Locks and Canals on the Merrimack River at Lowell, Massachusetts, to switch his career path to hydraulic engineering. About 1880, he started working for the Holyoke Water Power Company in Massachusetts. He remained with the company until 1889. While he was there, Herschel designed the Holyoke testing flume, which has been said to mark the beginning of the scientific design of water-power wheels. Herschel first tested his Venturi meter concept in 1886 while working for the company. The original purpose of the Venturi meter was to measure the amount of water used by the individual water mills in the Holyoke area.

Water supply development in northern New Jersey was an active area of investment in the late 19th century. In 1889, Herschel was hired as the manager and superintendent of the East Jersey Water Company, where he worked until 1900. He was responsible for the development of the Pequannock River water supply for Newark. He also installed two of his largest Venturi meters at Little Falls, New Jersey, on the main stem of the Rockaway River to serve Paterson, Clifton and Jersey City.

After 1900 and lasting until the end of his life, Herschel was a consulting hydraulic engineer with offices in New York City. He worked on some of the major water development projects in the world. He played a major part in the construction of the hydroelectric power plant at Niagara Falls, which was the first large-scale electric power plant. He was appointed to an expert committee that reviewed the plans for the first water tunnel that would deliver water from the Catskill reservoirs to New York City.

Herschel was one of the first five men inducted into the American Water Works Association Water Industry Hall of Fame. He was also made an honorary member of that organization. Herschel was awarded the Elliott Cresson medal in 1889 by the Franklin Institute for his development of the Venturi water meter.

In 1888, Herschel was presented with the Thomas Fitch Rowland Prize by the American Society of Civil Engineers. The Rowland Prize is awarded to an author whose paper describes in detail accomplished works of construction or which are valuable contributions to construction management and construction engineering. He was made an Honorary Member of ASCE in 1922.

The Clemens Herschel Prize was established at Harvard University in 1929. The award is given to meritorious students in practical hydraulics. Each year, the Boston Society of Civil Engineers Section presents the Clemens Herschel Award to authors ‘…who have published papers that have been useful, commendable, and worthy of grateful acknowledgment.’”

Commentary:  I am particularly pleased with this biography, which I wrote for Wikipedia. On December 23, 2012, Wikipedia chose the Clemens Herschel biography to feature on their main page in the Did You Know section.



February 22, 1913: Wallace and Tiernan and Over 100 years of Chlorination; 1989: Abel Wolman Dies

February 22, 1913: Over 100 Years of chlorination by Wallace & Tiernan. The company’s first gas-feed chlorinator, an experimental apparatus, was installed on a tributary of the Rockaway River at Dover, New Jersey, on February 22, 1913. Wallace & Tiernan was the dominant producer of chlorination equipment in the first decades of the twentieth century. Wallace & Tiernan were first founded in New York City, but shortly thereafter, they moved their administrative and manufacturing operations to Belleville, New Jersey. There were many connections between the early days of Wallace & Tiernan and the Jersey City water supply. William Griffin, superintendent of the Jersey City water department, hired Charles F. Wallace and Martin F. Tiernan to disinfect the polluted stream near Dover that was contaminating the Rockaway River as it flowed into Boonton Reservoir. Two of the expert witness in the Jersey City trials, Charles E. North and Earle B. Phelps, hired the two men in the very beginning of their careers to help install disinfection systems in cities as part of North and Phelps’s consulting practice. Tiernan actually ran the chloride of lime feed system at Boonton Reservoir in the early fall of 1912 when the chemist was on vacation.


Tiernan, Martin F. 1948 . “Controlling the Green Goddess.” Journal AWWA. 40:10  1042-50.

Wallace & Tiernan’s Fiftieth Anniversary. 1963. Brochure prepared for the Fiftieth Anniversary of Wallace & Tiernan, Inc.

February 22, 1989:  Abel Wolman dies. “Abel Wolman (June 10, 1892 – February 22, 1989) was an American inventor, scientist, professor and pioneer of modern sanitary engineering.

Wolman was born, grew up, was educated, lived and died in Baltimore, Maryland. He graduated from the Baltimore City College in 1909, got a B.A. from the Johns Hopkins University in 1913 and then a B.S. in engineering from Hopkins in 1915. From 1914 to 1939, Wolman worked for the Maryland State Department of Health, serving as Chief Engineer from 1922 to 1939. It was during his early years there that he made his most important contribution. Working in cooperation with chemist Linn Enslow, he standardized the methods used to chlorinate Baltimore’s drinking-water supply. His efforts there helped develop the plan for Baltimore’s water supply so thoroughly and effectively that it remains well-provided for growth through the 21st century. His work also benefited water systems in New York, Detroit and Columbus, Ohio. A collection of his writings has been published: Water, Health and Society, Selected Papers. Wolman served as the Chairman of the Advisory Council for planning Israel’s National Water Carrier project (1950-1956).

Wolman taught for many years on the faculty of Johns Hopkins University, where he established the Department of Sanitary Engineering in 1937. He served as the department’s chairman until his official retirement in 1962….

Wolman became Editor of the American Water Works Association’s Journal AWWA in 1919 and was responsible for making it into a monthly publication in 1924. The Association presents the Abel Wolman Award of Excellence each year to recognize those whose careers in the water works industry exemplify vision, creativity, and excellent professional performance characteristic of Wolman’s long and productive career.”

Commentary:  It is fitting that the anniversary of the first use of a Wallace & Tiernan chlorinator falls on the anniversary of Abel Wolman’s death. In the early 1920s, he and Linn Enslow modernized the system for determining the needed chlorine dose to provide safe drinking water. Prior to their work, chlorine doses were a matter of much guesswork.


#TDIWH-January 21, 2015: End of “Chinatown” Water Feud; 1915: Passaic Valley Sewer

For years, Los Angeles has tried, by flooding Owens Lake, to make amends for draining it dry Credit Monica Almeida/The New York Times

January 21, 2015:  New York Times Headline. Century Later, the ‘Chinatown’ Water Feud Ebbs. “OWENS LAKE, Calif. — For 24 years, traveling across the stark and dusty moonscape of what once was a glimmering 110-square-mile lake framed by snow-covered mountains, Ted Schade was a general in the Owens Valley water wars with Los Angeles. This was where Los Angeles began taking water for its own use nearly a century ago, leaving behind a dry lake bed that choked the valley with dust, turning it into one of the most polluted parts of the nation.

The result was a bitter feud between two night-and-day regions of California, steeped in years of lawsuits, conspiracy theories, toxic distrust and noir lore — the stealing of the Owens Valley water was the inspiration for the movie “Chinatown.” But while the water theft remains a point of contention, the battle long ago turned into one about the clouds of dust that were the legacy of the lost lake, 200 miles north of downtown Los Angeles.

An aerial view of Owens Lake. Credit Monica Almeida/The New York Times

In what may be the most startling development yet, the end of one of the great water battles in the West appears at hand: Instead of flooding the lake bed with nearly 25 billion gallons of Los Angeles water every year to hold the dust in place — the expensive and drought-defying stopgap solution that had been in place — engineers have begun to methodically till about 50 square miles of the lake bed, which will serve as the primary weapon to control dust in the valley.”

Passaic Valley Sewer Construction

January 21, 1915:  Municipal Journal article—Construction Features of the Passaic Valley Sewer. “The Passaic Valley sewer, which will carry to New York Bay the sewage formerly turned into the Passaic river by some dozen or more municipalities in northern New Jersey, is now about one-third completed. Actual construction work has been going on for about two and a half years and it is estimated that it will require at least three years more to finish the work, the total cost of which will be about $12,000,000. Practically all the contacts have now been let for the work and construction is going on rapidly.

From Paterson, where it is a pipe four feet in diameter, the sewer parallels the Passaic river to its mouth, receiving on its way the sewage from Glen Ridge, Bloomfield, Belleville, Nutley, Passaic, Paterson, Acquackanonk, Garfield, Wallington, Harrison, East Newark and Newark. At the latter place the tube, now twelve feet in diameter, makes a vertical drop of about 268 feet (to a distance of 250 feet below sea level) to pass under Newark bay. At Bayonne it rises 168 feet and at this elevation (100 feet below ground level) passes under Bayonne and New York bay to Robbins Reef where it discharges through pipes into the bay. On the salt meadows just outside Newark will be erected the pumping and treating plants. Here the sewage will be screened and passed through grit and sedimentation chambers to remove all the objectionable suspended material possible. Sufficient head will be maintained at the pumping plant to force the sewage into the bay. The final discharge will be through concrete pipes from the terminal chamber on the reef. By a fan-like arrangement of outlet pipes, a thorough distribution of the sewage will be assured”

Commentary:  This is the intercepting sewer that Dr. John L. Leal pushed for when he was health officer for Paterson, New Jersey in the early 1900s.

Reference:  Municipal Journal. “Construction Features of the Passaic Valley Sewer.” 38:3(January 21, 1915): 59.


#TDIWH—January 15, 2009: PFOA Provisional Health Advisory; 1917: Death of William J. Magie

Perfluorooctanoic acid (PFOA)

January 15, 2009:  On January 15, 2009, the USEPA set a provisional health advisory level for PFOA of 0.4 parts per billion in drinking water. “Perfluorooctanoic acid (PFOA), also known as C8 and perfluorooctanoate, is a synthetic, stable perfluorinated carboxylic acid and fluorosurfactant. One industrial application is as a surfactant in the emulsion polymerization of fluoropolymers. It has been used in the manufacture of such prominent consumer goods as Teflon and Gore-Tex. PFOA has been manufactured since the 1940s in industrial quantities. It is also formed by the degradation of precursors such as some fluorotelomers.

PFOA persists indefinitely in the environment. It is a toxicant and carcinogen in animals. PFOA has been detected in the blood of more than 98% of the general US population in the low and sub-parts per billion range, and levels are higher in chemical plant employees and surrounding subpopulations. Exposure has been associated with increased cholesterol and uric acid levels, and recently higher serum levels of PFOA were found to be associated with increased risk of chronic kidney disease in the general United States population, consistent with earlier animal studies. ‘This association was independent of confounders such as age, sex, race/ethnicity, body mass index, diabetes, hypertension, and serum cholesterol level.’”

Boonton Reservoir Hypochlorination Station

January 15, 1917:  Death of William J. Magie. In 1899, Jersey City, New Jersey contracted for the construction of a new water supply on the Rockaway River, which was 23 miles west of the City. The water supply included a dam, reservoir and 23-mile pipeline and was completed on May 4, 1904. As was common during this time period, no treatment (except for detention and sedimentation fostered by Boonton Reservoir) was provided to the water supply. City officials were not pleased with the project as delivered by the private water company and filed a lawsuit in the Chancery Court of New Jersey. Among the many complaints by Jersey City officials was the contention that the water served to the City was not “pure and wholesome” as required by the contract. William J. Magie was selected by Vice Chancellor Frederic W. Stevens to hear the second part of the case in which the use of chlorine for disinfection was a contentious issue.  One might assume that someone relatively junior might be appointed as the Special Master to hear the highly technical and excruciatingly long arguments from both sides of the case.  Not so.  William Jay Magie was one of the most revered judges of this time period.  He took the role of Special Master in 1908 after completing 8 years as Chancellor of the Court of Chancery.  Prior to that, he was a member of the New Jersey Senate (1876-1878), Associate Justice of the New Jersey Supreme Court (1880-1897) and Chief Justice of the same court from 1897 to 1900. (Marquis 1913)

“As a trial judge his cases were handled with notable success, as he had ample experience in trying causes before juries and a just appreciation of the worth of human testimony…” (Keasbey 1912) Judge Magie would need all of his powers of appreciation of human testimony in the second trial, which boiled down to which of the expert witnesses could be believed when both sides marshaled some of the most eminent doctors, scientists and engineers in the land.

Judge Magie was born on December 9, 1832 in Elizabeth, New Jersey and lived his life in that town.  He graduated from Princeton College in 1852 and studied law under an attorney in Elizabeth.  He was admitted to the bar of New Jersey in 1856.  At the time of the second trial in 1909 he was 77 years old and near the end of his distinguished career.

On May 9, 1910, William J. Magie submitted his Special Master Report. One of Magie’s findings was of critical importance to the defendants because he laid to rest the concern that chlorine was a poison that would harm members of the public who consumed the water.

“Upon the proofs before me, I also find that the solution described leaves no deleterious substance in the water. It does produce a slight increase of hardness, but the increase is so slight as in my judgment to be negligible.” (Magie, In Chancery of New Jersey, 1910)

The Special Master Report then delivered the finding that defendants had been waiting for:

“I do therefore find and report that this device is capable of rendering the water delivered to Jersey City, pure and wholesome, for the purposes for which it is intended, and is effective in removing from the water those dangerous germs which were deemed by the decree to possibly exist therein at certain times.” (emphasis added) (Magie, In Chancery of New Jersey, 1910)

Magie’s finding summarized in this one sentence approved the use of chlorine for drinking water. After this ruling, the use of chlorine for drinking water disinfection exploded across the U.S. (McGuire 2013)

In a filing after Magie’s final decree, compensation for Judge Magie was noted as $18,000 for the entire second trial with its 38 days of testimony over 14 months, dozens of briefs and hundreds of exhibits.  It must have been the hardest $18,000 he ever earned.


  • Keasbey, E.Q. (1912). The Courts and Lawyers of New Jersey, 1661-1912. Vol. 3, New York:Lewis Historical Publishing Co.
  • Magie, William J. (1910). In Chancery of New Jersey: Between the Mayor and Aldermen of Jersey City, Complainant, and the Jersey City Water Supply Co., Defendant. Report for Hon. W.J. Magie, special master on cost of sewers, etc., and on efficiency of sterilization plant at Boonton, Press Chronicle Co., Jersey City, New Jersey, (Case Number 27/475-Z-45-314), 1-15.
  • Marquis, Albert N. (1913). Who’s Who in America. 7, Chicago:A.N. Marquis.
  • McGuire, Michael J. (2013). The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

December 21, 1868: Birth of George Warren Fuller

George Warren Fuller, 1903, 35 years old

December 21, 1868:  Birth of George Warren Fuller in Franklin, Massachusetts. George Warren Fuller was, quite simply, the greatest sanitary engineer of his time, and his time was long—lasting from 1895 to 1934.  In truth, we have not seen his like since.  How did he reach the pinnacle of his field?  What early influences led him on his path? There is a biography of Fuller on Wikipedia that I wrote which summarizes his life from a “neutral point of view.” The material below is taken in part from Chapter 7 of The Chlorine Revolution:  Water Disinfection and the Fight To Save Lives. By design, it gives more of a personal flavor to his life.

George Warren Fuller was born in Franklin, Massachusetts on December 21, 1868—ten years after the death of Dr. John Snow and ten years after the birth of Dr. John L. Leal.  He was the son of George Newell Fuller and Harriet Martha Craig. There is not much known about his father who was simply described as a farmer.  His father was born on the Fuller family property in Franklin, Massachusetts on November 22, 1819.

Harriet Martha Craig was born on February 2, 1841, grew up near Leicester, Massachusetts, and attended Mount Holyoke College, but she did not graduate.  Her final year at the institution was 1865.  They were married on November 15, 1866 when he was 46 and she was only 25.  They settled down in the Franklin-Medway area of rural Massachusetts for a quiet life of farming on the ancestral Fuller family property.  They had two children, George W. and Mabel B. who was born in 1876.  We know that George kept in touch with his younger sister in later years.  She married Carl W. DeVoe and moved to Jerome, Idaho. George owned a ranch in Idaho and must have visited her there.

Place names in Massachusetts have changed over the past several hundred years as the land area covering certain towns changed due to the expansion and contraction of town boundaries or as a result of new towns being carved off from old ones.  Towns that figured prominently in Fuller’s history, Dedham, Franklin and West Medway, all describe the same general area, which is about 10-25 miles southwest of Boston.

We know only a little about his early education.  One report observed:

“George Warren Fuller was at the head of his class when he attended the Dedham schools. His scholarship was, of course, a source of great satisfaction to his mother. At sixteen he passed the examination for entrance at MIT but, his father having died a few weeks before, it was thought best for him to have a fourth year in high school….”

After his father’s death on May 3, 1885, his mother moved 2,500 miles away to Claremont, California where she lived until she died in 1915.  George must have felt that he had lost both parents at the same time.  We do not know if he was looking for a stable family life to replace the one he had lost, but we do know that he married when he was only two years out of high school, in 1888.  His first wife, Lucy Hunter was born in October 1869 and died far too young on March 18, 1895. Lucy came from a family who immigrated to America from New Brunswick and Prince Edward Island.  Her father was born about 1830 and listed his occupation as farmer.  Her mother, Sarah, was born about 1845.  The farming family had seven children, three boys and four girls.  They must have moved to Boston from New Brunswick sometime between 1877 and 1880.  The youngest boy, Harry, was born in New Brunswick about 1877. I recently heard from a descendant of Lucy Fuller who was researching her family. According to her second cousin, three times removed, the family was sailing from Northern Ireland to Philadelphia in 1767 when their ship was wrecked off of Nova Scotia. Lucy’s family eventually made it to Boston while many of the other Hunters moved on to Ontario, Canada.

In 1880, the U.S. census showed that her family lived in Boston at 218 Bennington Street, which is now near Boston Logan International Airport and was located near cultivated land in the late 1800s.  The address is about three miles from the MIT campus, as the crow flies.

Lucy was 18 years old and Fuller was 20 years old when they were married.  Fuller was only in his second year at university (1886-1890).  They had one son, Myron E. Fuller who was born in Boston on June 4, 1889. We do not know much about the marriage, but we do know that George W. Fuller was issued a passport on May 2, 1890 for his trip to Germany and his continued studies. There is no record that Lucy or Myron applied for a passport or accompanied Fuller to Germany.  Massachusetts death records listed her cause of death as “enteritis” which was a general term used for diseases caused by the ingestion of pathogens from food or water.  The death records listed her as “married” which meant that her marriage to Fuller was not dissolved prior to her death. There is no evidence that George W. Fuller lived with her and their son after 1889.

From a 1910 census report, it is clear that Myron lived with his father in Summit, New Jersey.  One recorded connection we know of between Myron and his father was mentioned in the preface of Fuller’s 1912 book, Sewage Disposal. Fuller acknowledged Myron (who was 22 years old at the time) for creating the index to the book.  One source showed that Fuller and McClintock employed Myron from 1911 to 1916 and again from 1919 until at least 1922. In 1918, Myron registered for the draft and listed his occupation as civil engineer. The same reference showed Myron working for the City of Philadelphia in the Bureau of Surveys—the same occupation as his great-great-great-great grandfather, Ensign Thomas Fuller.  He lived in Philadelphia with his wife and one child.

While Fuller was in Louisville working on the filtration investigations, he met Caroline L. Goodloe who came from a fine, old Louisville family.  In November 1899, Fuller married her in Louisville. They were both 31 years old when they were married.  In May of 1900, husband and wife went on a trip to Europe—a somewhat delayed honeymoon. Their son, Kemp Goodloe Fuller, was born on March 10, 1901. On November 11, 1903, while living in New York City, their second son, Asa W. Fuller was born.

We know from records published in the annual report of the APHA and other sources that Fuller had his offices in New York City at 220 Broadway for many years beginning in 1899, which was the same address given by Allen Hazen for his offices for a short period of time.

Tragically, Caroline Goodloe Fuller died in June 21, 1907, while George W. Fuller was most heavily engaged in numerous water and sewage disposal projects all over the U.S.  At her death, George W. Fuller was living at 309 West 84th Street in New York City with his wife and their sons.  She was 38 years old.

The 1910 Census form showed that Fuller was living at 160 Boulevard, Summit, New Jersey with Alice C. Goodlow (sic) who was identified as his sister-in-law, Mary L. Goodlow (sic) identified as his mother-in-law and his three sons Myron, Kemp G. and Asa.  George’s in-laws had come up from Louisville to help him raise the boys.  Also listed at the same residence was an interesting guest, Grace F. Thomson, 43, born in China of English ancestry and claiming a trade of metal working.  In addition, there were three servants (two Irish and one Greek) making it a full and busy household.  The census form showed him as widowed, so by 1910 he had not remarried.

We know from several accounts, that George Warren Fuller was, in many ways, a big man.  Physically, he was tall.  An account by a colleague said that he was over six feet tall, but passport application forms that Fuller filled out showed that his height was 5 feet 10 inches. Pictures of him from 1903 until at least 1928 showed that he was, to use a descriptor from the time, stout. One description had him at 285 pounds with a size 18 collar.

His hair was dark brown and, in the style of the day, slicked down and parted in the middle.  As time marched on, he began to gray at the temples and then the gray seemed to take over his thinning head of hair.  He was clean-shaven except for his days in Louisville during the filtration studies, when he sported a bushy mustache.  He had blue eyes that could bore into someone who did not please him and twinkle when he was trying to charm a lady.  The round spectacles that he always wore did not detract from the intensity of his blue eyes.

Commentary:  George Warren Fuller Comes to California…in 2012

On April 3 2012, I gave a talk at the California Nevada Section Conference of the American Water Works Association. I teamed up with John Marchand who gave a talk on Dr. John Snow of Broad Street Pump fame. We made a pact to give our talks in costume, which incredibly we both followed through on. Below are links to my talk broken up into three parts (YouTube restrictions). It describes Fuller’s life and the first use of chlorine on the Jersey City water supply in 1908.

Part 1:  http://youtu.be/37WZkp5148w

Part 2:  http://youtu.be/rsicrBvVMc4

Part 3:  http://youtu.be/n6PuOvjjQMI