Tag Archives: Ohio

December 7, 1916: Cleveland Activated Sludge Plant

Activated Sludge Plant, Cleveland, OH

December 7, 1916Engineering Newsarticle. Activated Sludge Results at Cleveland Reviewed. “A comprehensive review of nearly a year’s operation of one of the two largest activated sludge plants in the United States. Cleveland’s activated-sludge installation has now been in operation over nine months. Within 10 days after passing sewage through the plant, activated sludge was produced, but it took about two months to get all the recording apparatus tested out and the plant in shape for continuous operation….

The first experiments at Cleveland with the activated-sludge process indicated that two important requirements of an ideal method of sewage treatment were being satisfied:  The process produced a clear sparkling effluent and there was an absence of odors….

The theory of the activated-sludge process involves properly conditioning a bacterial growth and bringing the growth into the most intimate contact wit the suspended particles of the crude sewage. The plant, therefore, was divided into six compartments in order that the results obtained at the end of each step could be definitely studied and that, if necessary, the solid matter of the sewage could be aerated longer than the liquid itself.”

Reference:  “Activated Sludge Results at Cleveland Reviewed—I.” (1916). Engineering News. 76:23(December 7, 1916): 1061-2.

Advertisements

October 15, 1918: First Water Permit Issued to LADWP; 1988: Uranium Leak

October 15, 1918:  Date of first water permitissued to the Los Angeles Department of Water and Power for the Owens Valley water supply. On this date, the California Department of Public Health issued the first water supply permit to LADWP for the Owens Valley water supply, which started operation on November 5, 1913. The permit includes a report authored by Ralph Hilscher who was the Southern Division Engineer at the time. The report catalogues all of the major features of the Owens Valley supply including the physical facilities built to transport the water 233 miles to Los Angeles. In the report is a detailed assessment of the potential sources of contamination of the water supply by human habitation. The report stressed that only 1.5 persons per square mile occupied the Owens Valley aqueduct watershed compared with 132 persons per square mile, which was stated as typical of watersheds in Massachusetts.

Ignored were the potential pathogens from animals such as deer, beavers and cows (Giardia lambliaand Cryptosporidium parvum). Health authorities simply were not aware at that time of the potential for these pathogen sources to contaminate a water supply and cause disease in humans (zoonotic diseases). A statement in the report makes this point clearly, “It is the consensus of opinion among sanitarians that human waterborne diseases have their origin only in human beings.”

The report recognized the purifying action of the large reservoirs in the Owens Valley system that had extensive detention times, which were instrumental in reducing pathogen concentrations.

Another fact that I was unaware of until I read the report was that the first 24 miles of the aqueduct were earthen-lined and not lined with concrete.

Missing from the report is any mention of the use of chlorine for disinfection. Other literature sources had estimated that chlorination of the LA Aqueduct supply could have taken place as early as 1915. It is clear from the Department of Public Health report that any chlorination of LA water supplies around 1915 must have referred to disinfection of the water from infiltration galleries along the Los Angeles River. One report that I have read (unconfirmed) stated that ammonia was also added at the infiltration galleries to form chloramines. I have still not located a firm date when the Owens Valley supply was chlorinated.

A letter dated December 12, 1924, from Carl Wilsonwho was the Laboratory Director for the LADWP to C.G. Gillespie of the Bureau of Sanitary Engineering summarized the progress that they had made in applying chlorine to their system. In that letter are two curious statements by Mr. Wilson. First, he only planned to operate chlorinators treating water from the reservoirs during the rainy season because no local runoff would be entering the hillside reservoirs. Second, he did not see the need to determine chlorine residual using the orthotolidine method, but he would do so if required by the Department. It took a long time for sanitary practices to penetrate the operational mindset of all water utilities not just the LADWP. From a paper published in 1935, we know that the entire system was chlorinated by that time with multiple application points in the system.

Read the entire permitfor a fascinating view into the thinking of a regulatory agency during the early days of our understanding of watershed protection and maintenance of a water supply that would be free from disease causing microorganisms.

Reference:  Goudey, R.F. “Chlorination of Los Angeles Water Supply.” Am J Public Health Nations Health. 1935 June; 25(6): 730–734. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1558978/Accessed October 14, 2013.

Credit: Thanks to Susan Brownstein of LADWP for sharing a copy of the permit with me.

Uranium Contaminated Site

October 15, 1988: New York Times headline–U.S., for Decades, Let Uranium Leak at Weapon Plant. “Government officials overseeing a nuclear weapon plant in Ohio knew for decades that they were releasing thousands of tons of radioactive uranium waste into the environment, exposing thousands of workers and residents in the region, a Congressional panel said today.

The Government decided not to spend the money to clean up three major sources of contamination, Energy Department officials said at a House Energy and Commerce subcommittee hearing. Runoff from the plant carried tons of the waste into drinking water wells in the area and the Great Miami River; leaky pits at the plant, storing waste water containing uranium emissions and other radioactive materials, leaked into the water supplies, and the plant emitted radioactive particles into the air…Fernald’s problems with radioactive emissions have been public knowledge and a source of anxiety and frustration for several years.

But in court documents discussed today at the hearing and reported last week by the Cincinnati papers, Government officials acknowledged for the first time that ”the Government knew full well that the normal operation of the Fernald plant would result in emissions of uranium and other substances” into water supplies and into the atmosphere.”

October 11, 1961: Dedication of LaDue Reservoir; 1989: Water-Main Break Spews Asbestos Into 8th Ave.; 1988: Less Lead in Rivers

October 11, 1961:  Dedication of Wendell R. LaDue Reservoir. LaDue Reservoir is a water supply, flood control and recreation reservoir located in Geauga County, Ohio, in the northeastern part of the state. The reservoir was originally called the “Akron City Reservoir” before it was renamed for Wendell R. LaDue. Wendell R. LaDue was a water supply visionary who made many improvements to the water supply for Akron, Ohio. He was born in Mt. Pleasant, Ohio on October 1, 1894. He earned his BS in Civil Engineering from the University of Southern California in 1918. Shortly afterwards, he joined the staff of the Akron Waterworks.

While serving as its manager, LaDue developed a watershed plan to insure adequate clean water supply. The plan included purchasing property along the Cuyahoga River and building a series of reservoirs. In 1932, the City of Akron began purchasing property along the Cuyahoga River in Geauga County and removing homes and farms to protect the watershed. LaDue oversaw the construction of the 695 acres Rockwell Lake, the 395 acres East Branch in 1938, and the 1,477 acres Akron City Reservoir, now called LaDue Reservoir, in 1961. The capacity of the three reservoirs is 10.5 billion gallons.

In 1947, LaDue founded the Akron-Canton Section of the American Society of Civil Engineers. In honor of his contributions, the Wendell R. LaDue Civil Engineer Award is awarded each year by the ASCE to a member who has promoted professionalism and the advancement of the civil engineering profession. In 1946 and 1947, LaDue was the president of the American Water Works Association. Since 2003, several Wendell R. LaDue Utility Safety Awards are presented by the AWWA to recognize distinguished water utility safety programs.

LaDue retired from the City of Akron in 1963, and began teaching at the University of Akron where he was awarded an honorary Doctorate of Engineering Degree.”

October 11, 1989New York Times headline–Water-Main Break Spews Asbestos Into 8th Ave. “A water main burst at the intersection of Eighth Avenue and West 43d Street yesterday, sending asbestos-laden mud gurgling up the avenue and cascading down onto the IND subway tracks below, officials said.

The police closed West 43d Street and blocked off several lanes of Eighth Avenue while the City Department of Environmental Protection tested the mud to determine the level of asbestos, which was scattered from underground steam pipes.

A spokeswoman for the environmental agency, Tina Casey, said that the first round of tests showed varying amounts of asbestos, with one sample above ground containing 60 percent. Anything greater than 1 percent asbestos is considered hazardous, she said.”

October 11, 1988New York Times headline–Science Watch; Less Lead in Rivers. “A decline in lead contamination in major American rivers has been found at two-thirds of 300 sites studied from 1974 to 1985, scientists at the United States Geological Survey have reported.

The report chiefly attributed the decline to a 75 percent drop in use of leaded gasoline in that period. The most rapid drop in lead content was recorded from 1979 to 1980, when use of leaded gasoline took its sharpest drop.

Preliminary analyses of more recent data indicate that the decline in lead contamination is continuing.”

August 15, 1915: Akron Water System Begins Operation; 1922: National Coast Anti Pollution League

Akron Water Treatment Plant, 1915

August 15, 1915:Akron Water System Begins Operation. “A century ago, Akron was a very unhealthy community. In 1915, 126 people came down with typhoid fever — with 25 deaths. The deaths and illnesses in Akron and other American cities were caused by contaminated drinking water. Akron’s problem started to disappear in 1915 when the city opened its new reservoir and new water-treatment plant in Portage County — plus lines to bring that water into Akron. The new system went into operation Aug. 15, 1915 — 100 years ago this Saturday. And before long, typhoid cases diminished. In 1920, Akron had eight typhoid deaths. By 1925, the death toll had dropped to two.

Today, Akron’s water system remains one of the city’s biggest assets. The city has invested $3 billion in the water system in the last 100 years, says Jeffrey Bronowski, Akron’s Water Supply Bureau manager. Akron’s efforts to overhaul its water system began in 1910. That’s when Mayor William T. Sawyer and City Council decided to create a whole new water system. On Aug. 28, 1911, an engineering team recommended that Akron buy land and build a reservoir north of Kent on the Cuyahoga River. That would serve as Akron’s main water source, with large pipelines running from the reservoir’s water-treatment plant to Akron. It was a costly $30 million step, but a major typhoid outbreak in 1911 resulted in 40 deaths in Akron that summer.

The recommendation came from two consulting engineers: Frank A. Barbour of Boston and E.G. Bradbury of Columbus, who played a key role in developing Akron’s new system. They were paid $10,000 by the city. They analyzed the city’s options, including the Cuyahoga River, the Portage Lakes, the Tuscarawas River, the Little Cuyahoga River and the Congress Lake area. They told Akron that the best water came from the Cuyahoga River watershed. There were fewer people there and less pollution. The watershed was also bigger and capable of producing more water. What they envisioned was a series of reservoirs away from the city, much like what New York City was planning.

Horses Hauling Cast Iron Pipe for Akron Distribution System

Before the report was released, Akron Mayor William Sawyer and Service Director John Gauthier began buying options on more than 2,000 acres of land in the Cuyahoga River watershed for about $150 an acre. The two consultants were then hired by Akron to oversee building the new water system. Work began in 1913. A dam 280 feet long was built on the Cuyahoga River about three miles north of Kent. The 769-acre reservoir, called Lake Rockwell, was designed to provide Akron with 25 million gallons of drinking water per day. Steam shovels were used to dig the lake, but 18-horse teams with plows were used to cut through the heavy clay.

A parade of 200 vehicles traveling from Akron to Lake Rockwell celebrated the opening of the new $5 million water plant. Ex-Mayor Sawyer and current Mayor Frank W. Rockwell both claimed credit for the safe drinking water. Akron initially installed 70 miles of street mains to distribute the water. The city pumped about 12 million gallons that first year.”

Gifford Pinchot, Forest Service head, Pennsylvania governor and president of the National Coast Anti-Pollution League

August 15, 1922:“In support of the National Coast Anti-Pollution League, the Philadelphia Ledgerwrites of a time, 20 years beforehand, when fish were common in the Delaware River: ‘How [can] any sane person deliberately go into such black and vile-looking water? … [Only twenty years ago] the haul of the shad net brings that thrilling moment when the encircled fish break water and the whole surface enclosed in the arc of bobbing corks suddenly bursts into silver flame as a hundred fine big fellows leap and churn in a last desperate effort … There’s a lot more than sentiment in such reminiscences as these… They mean happiness and health in an age when the tendency is to sleep away from the turmoil and the ‘twice breathed air’ of the city… The lack of such things means millions of dollars in good, hard cash, to say nothing of the less material considerations. Philadelphia, of all cities, should support the Anti-Pollution League and should welcome the election of Gifford Pinchot to its presidency.’”

Commentary: Four days prior to the Ledger article, the National Coast Anti Pollution League was formed by state and municipal officials at Atlantic City, New Jersey to stop oil dumping. The rampant industrialization of the late 1800s and early 1900s had terrible consequences for the water resources of the U.S. Philadelphia bore more than its share of contaminated water and vanished fisheries. It would be many decades before these trends were permanently reversed. Based on what I saw in China in May of 2013, they should form a National Coast Anti Pollution League immediately and tackle their severe air and water pollution problems.

April 3, 1986: Death of Wendell R. LaDue

April 3, 1986: Death of Wendell R. LaDue. Wendell R. LaDue was a water supply visionary who made many improvements to the water supply for Akron, Ohio. He was born in Mt. Pleasant, Ohio on October 1, 1894. He earned his BS in Civil Engineering from the University of Southern California in 1918. Shortly afterwards, he joined the staff of the Akron Waterworks. “While serving as its manager, LaDue developed a watershed plan to insure adequate clean water supply. The plan included purchasing property along the Cuyahoga River and building a series of reservoirs. In 1932, the City of Akron began purchasing property along the Cuyahoga River in Geauga County and removing homes and farms to protect the watershed. LaDue oversaw the construction of the 695 acres Rockwell Lake, the 395 acres East Branch in 1938, and the 1,477 acres Akron City Reservoir, now called LaDue Reservoir, in 1961. The capacity of the three reservoirs is 10.5 billion gallons.

In 1947, LaDue founded the Akron-Canton Section of the American Society of Civil Engineers. In honor of his contributions, the Wendell R. LaDue Civil Engineer Award is awarded each year by the ASCE to a member who has promoted professionalism and the advancement of the civil engineering profession. In 1946 and 1947, LaDue was the president of the American Water Works Association. Since 2003, several Wendell R. LaDue Utility Safety Awards are presented by the AWWA to recognize distinguished water utility safety programs.

LaDue retired from the City of Akron in 1963, and began teaching at the University of Akron where he was awarded an honorary Doctorate of Engineering Degree.”

March 11, 1869: Akron Fire Impacts on Water Supply

Main Street, Akron, Ohio, 1875

March 11, 1869: Major fire in Akron, Ohio leads to early improvements in water service. The fire burned down all of the buildings between High and Main Streets. Soon after, the public demanded water reservoirs for fire safety. Citizens pooled their money to purchase large cisterns and in the early 1870s, eighteen cisterns were constructed throughout the city each holding 500 to 2,000 gallons. In 1880 M.S. Frost Consulting Engineers and a group of prominent local men negotiated a deal with the city to be the sole provider of water to the city. The company would construct a water system for Akron as long as the city would agree to pay $6,750 per year for water service to fight fires and to rent 150 fire hydrants that the company would install. In 1880 the M.S. Frost and Son sold the rights of the water deal to the Akron Water Works company headed by Frank Adams and George W. Crouse.

Commentary: Without doubt, the major reason to build centralized water systems in the 19th century was not to provide a water supply to a city. Pressurized water systems were needed to stop cities from burning to the ground.

March 4, 1877: Birth of Garrett A. Morgan; 1875: British Public Health Act Debated

Garrett A. Morgan

March 4, 1877: Birth of Garrett A. Morgan. “With only an elementary school education, Garrett Morgan, born in Kentucky on March 4, 1877, began his career as a sewing-machine mechanic. He went on to patent several inventions, including an improved sewing machine and traffic signal, a hair-straightening product, and a respiratory device that would later provide the blueprint for WWI gas masks.

In 1914, Morgan patented a breathing device, or “safety hood,” providing its wearers with a safer breathing experience in the presence of smoke, gases and other pollutants. Morgan worked hard to market the device, especially to fire departments, often personally demonstrating its reliability in fires. Morgan’s breathing device became the prototype and precursor for the gas masks used during World War I, protecting soldiers from toxic gas used in warfare. The invention earned him the first prize at the Second International Exposition of Safety and Sanitation in New York City.

Garrett A. Morgan with “safety hood”

There was some resistance to Morgan’s devices among buyers, particularly in the South, where racial tension remained palpable despite advancements in African-American rights. In an effort to counteract the resistance to his products, Morgan hired a white actor to pose as “the inventor” during presentations of his breathing device; Morgan would pose as the inventor’s sidekick, disguised as a Native American man named “Big Chief Mason,” and, wearing his hood, enter areas otherwise unsafe for breathing. The tactic was successful; sales of the device were brisk, especially from firefighters and rescue workers.”

Garrett A. Morgan Water Treatment Plant

The Garrett A. Morgan Water Treatment Plant, built in 1916, was originally named The Division Avenue Pumping and Filtration Plant, and was constructed on the site of where the original water system originated in 1856….

Garrett A. Morgan Water Treatment Plant, Filter Gallery

In 1991, the plant was renamed the Garrett A. Morgan Water Treatment Plant. It is named after Garrett Augustus Morgan, a local inventor and entrepreneur whose creations have made a positive impact on the world and are still being used today. He is also known for inventing an improved traffic signal with a warning light; a zig-zag stitching attachment for sewing machines; and hair cream. However, his most notable invention was the gas mask which saved the lives of several men trapped during an explosion in an underground tunnel beneath Lake Erie in 1916. This same gas mask was adopted by the U.S. Armed Forces during WWI and became the prototype for modern day firefighting hoods used to battle oil well fires.”

Offscourings

March 4, 1875: British Public Health Act consolidates authority to deal with housing, water pollution, occupational disease, and other problems. On this date, an article appeared in The Nation that described the appalling conditions of drinking water in London: “It is no exaggeration to say that … there is hardly an unpolluted river in the whole of England. Between the sewage of towns and the offscourings of manufactories, distilleries, breweries, and the like, every stream and river in the country is poisoned and rendered unfit for domestic use. Sparkling brooks that not many years ago were frequented by speckled trout and silvery salmon are now transformed into gigantic cesspools, which a clean-living toad would be ashamed to haunt. No wise man or woman will touch a drop of London water until it has been boiled and filtered, and even then they will use as little of it as they can. The manufacturing interest will no doubt be roused if any attempt be made to interfere with their prerogative of public poisoning. But the good sense, not to say the newly- awakened terror, of the country will support the Government if their measure be wisely considered, and be calculated to promote the end it has in view. [The Nation. Mar. 4, 1875, p.11, “The Coming Measures.”]