Tag Archives: Ohio

October 15, 1918: First Water Permit Issued to LADWP; 1988: Uranium Leak

October 15, 1918:  Date of first water permit issued to the Los Angeles Department of Water and Power for the Owens Valley water supply. On this date, the California Department of Public Health issued the first water supply permit to LADWP for the Owens Valley water supply, which started operation on November 5, 1913. The permit includes a report authored by Ralph Hilscher who was the Southern Division Engineer at the time. The report catalogues all of the major features of the Owens Valley supply including the physical facilities built to transport the water 233 miles to Los Angeles. In the report is a detailed assessment of the potential sources of contamination of the water supply by human habitation. The report stressed that only 1.5 persons per square mile occupied the Owens Valley aqueduct watershed compared with 132 persons per square mile, which was stated as typical of watersheds in Massachusetts.

Ignored were the potential pathogens from animals such as deer, beavers and cows (Giardia lamblia and Cryptosporidium parvum). Health authorities simply were not aware at that time of the potential for these pathogen sources to contaminate a water supply and cause disease in humans (zoonotic diseases). A statement in the report makes this point clearly, “It is the consensus of opinion among sanitarians that human waterborne diseases have their origin only in human beings.”

The report recognized the purifying action of the large reservoirs in the Owens Valley system that had extensive detention times, which were instrumental in reducing pathogen concentrations.

Another fact that I was unaware of until I read the report was that the first 24 miles of the aqueduct were earthen-lined and not lined with concrete.

Missing from the report is any mention of the use of chlorine for disinfection. Other literature sources had estimated that chlorination of the LA Aqueduct supply could have taken place as early as 1915. It is clear from the Department of Public Health report that any chlorination of LA water supplies around 1915 must have referred to disinfection of the water from infiltration galleries along the Los Angeles River. One report that I have read (unconfirmed) stated that ammonia was also added at the infiltration galleries to form chloramines. I have still not located a firm date when the Owens Valley supply was chlorinated.

A letter dated December 12, 1924, from Carl Wilson who was the Laboratory Director for the LADWP to C.G. Gillespie of the Bureau of Sanitary Engineering summarized the progress that they had made in applying chlorine to their system. In that letter are two curious statements by Mr. Wilson. First, he only planned to operate chlorinators treating water from the reservoirs during the rainy season because no local runoff would be entering the hillside reservoirs. Second, he did not see the need to determine chlorine residual using the orthotolidine method, but he would do so if required by the Department. It took a long time for sanitary practices to penetrate the operational mindset of all water utilities not just the LADWP. From a paper published in 1935, we know that the entire system was chlorinated by that time with multiple application points in the system.

Read the entire permit for a fascinating view into the thinking of a regulatory agency during the early days of our understanding of watershed protection and maintenance of a water supply that would be free from disease causing microorganisms.

Reference:  Goudey, R.F. “Chlorination of Los Angeles Water Supply.” Am J Public Health Nations Health. 1935 June; 25(6): 730–734. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1558978/ Accessed October 14, 2013.

Credit:  Thanks to Susan Brownstein of LADWP for sharing a copy of the permit with me.

Uranium Contaminated Site

October 15, 1988: New York Times headline–U.S., for Decades, Let Uranium Leak at Weapon Plant. “Government officials overseeing a nuclear weapon plant in Ohio knew for decades that they were releasing thousands of tons of radioactive uranium waste into the environment, exposing thousands of workers and residents in the region, a Congressional panel said today.

The Government decided not to spend the money to clean up three major sources of contamination, Energy Department officials said at a House Energy and Commerce subcommittee hearing. Runoff from the plant carried tons of the waste into drinking water wells in the area and the Great Miami River; leaky pits at the plant, storing waste water containing uranium emissions and other radioactive materials, leaked into the water supplies, and the plant emitted radioactive particles into the air…Fernald’s problems with radioactive emissions have been public knowledge and a source of anxiety and frustration for several years.

But in court documents discussed today at the hearing and reported last week by the Cincinnati papers, Government officials acknowledged for the first time that ”the Government knew full well that the normal operation of the Fernald plant would result in emissions of uranium and other substances” into water supplies and into the atmosphere.”

Advertisements

October 11, 1961: Dedication of LaDue Reservoir; 1989: Water-Main Break Spews Asbestos Into 8th Ave.; 1988: Less Lead in Rivers

October 11, 1961:  Dedication of Wendell R. LaDue Reservoir. LaDue Reservoir is a water supply, flood control and recreation reservoir located in Geauga County, Ohio, in the northeastern part of the state. The reservoir was originally called the “Akron City Reservoir” before it was renamed for Wendell R. LaDue. Wendell R. LaDue was a water supply visionary who made many improvements to the water supply for Akron, Ohio. He was born in Mt. Pleasant, Ohio on October 1, 1894. He earned his BS in Civil Engineering from the University of Southern California in 1918. Shortly afterwards, he joined the staff of the Akron Waterworks.

While serving as its manager, LaDue developed a watershed plan to insure adequate clean water supply. The plan included purchasing property along the Cuyahoga River and building a series of reservoirs. In 1932, the City of Akron began purchasing property along the Cuyahoga River in Geauga County and removing homes and farms to protect the watershed. LaDue oversaw the construction of the 695 acres Rockwell Lake, the 395 acres East Branch in 1938, and the 1,477 acres Akron City Reservoir, now called LaDue Reservoir, in 1961. The capacity of the three reservoirs is 10.5 billion gallons.

In 1947, LaDue founded the Akron-Canton Section of the American Society of Civil Engineers. In honor of his contributions, the Wendell R. LaDue Civil Engineer Award is awarded each year by the ASCE to a member who has promoted professionalism and the advancement of the civil engineering profession. In 1946 and 1947, LaDue was the president of the American Water Works Association. Since 2003, several Wendell R. LaDue Utility Safety Awards are presented by the AWWA to recognize distinguished water utility safety programs.

LaDue retired from the City of Akron in 1963, and began teaching at the University of Akron where he was awarded an honorary Doctorate of Engineering Degree.”

October 11, 1989New York Times headline–Water-Main Break Spews Asbestos Into 8th Ave. “A water main burst at the intersection of Eighth Avenue and West 43d Street yesterday, sending asbestos-laden mud gurgling up the avenue and cascading down onto the IND subway tracks below, officials said.

The police closed West 43d Street and blocked off several lanes of Eighth Avenue while the City Department of Environmental Protection tested the mud to determine the level of asbestos, which was scattered from underground steam pipes.

A spokeswoman for the environmental agency, Tina Casey, said that the first round of tests showed varying amounts of asbestos, with one sample above ground containing 60 percent. Anything greater than 1 percent asbestos is considered hazardous, she said.”

October 11, 1988New York Times headline–Science Watch; Less Lead in Rivers. “A decline in lead contamination in major American rivers has been found at two-thirds of 300 sites studied from 1974 to 1985, scientists at the United States Geological Survey have reported.

The report chiefly attributed the decline to a 75 percent drop in use of leaded gasoline in that period. The most rapid drop in lead content was recorded from 1979 to 1980, when use of leaded gasoline took its sharpest drop.

Preliminary analyses of more recent data indicate that the decline in lead contamination is continuing.”

August 15, 1915: Akron Water System Begins Operation; 1922: National Coast Anti Pollution League

Akron Water Treatment Plant, 1915

August 15, 1915: Akron Water System Begins Operation. “A century ago, Akron was a very unhealthy community. In 1915, 126 people came down with typhoid fever — with 25 deaths. The deaths and illnesses in Akron and other American cities were caused by contaminated drinking water. Akron’s problem started to disappear in 1915 when the city opened its new reservoir and new water-treatment plant in Portage County — plus lines to bring that water into Akron. The new system went into operation Aug. 15, 1915 — 100 years ago this Saturday. And before long, typhoid cases diminished. In 1920, Akron had eight typhoid deaths. By 1925, the death toll had dropped to two.

Today, Akron’s water system remains one of the city’s biggest assets. The city has invested $3 billion in the water system in the last 100 years, says Jeffrey Bronowski, Akron’s Water Supply Bureau manager. Akron’s efforts to overhaul its water system began in 1910. That’s when Mayor William T. Sawyer and City Council decided to create a whole new water system. On Aug. 28, 1911, an engineering team recommended that Akron buy land and build a reservoir north of Kent on the Cuyahoga River. That would serve as Akron’s main water source, with large pipelines running from the reservoir’s water-treatment plant to Akron. It was a costly $30 million step, but a major typhoid outbreak in 1911 resulted in 40 deaths in Akron that summer.

The recommendation came from two consulting engineers: Frank A. Barbour of Boston and E.G. Bradbury of Columbus, who played a key role in developing Akron’s new system. They were paid $10,000 by the city. They analyzed the city’s options, including the Cuyahoga River, the Portage Lakes, the Tuscarawas River, the Little Cuyahoga River and the Congress Lake area. They told Akron that the best water came from the Cuyahoga River watershed. There were fewer people there and less pollution. The watershed was also bigger and capable of producing more water. What they envisioned was a series of reservoirs away from the city, much like what New York City was planning.

Before the report was released, Akron Mayor William Sawyer and Service Director John Gauthier began buying options on more than 2,000 acres of land in the Cuyahoga River watershed for about $150 an acre. The two consultants were then hired by Akron to oversee building the new water system. Work began in 1913. A dam 280 feet long was built on the Cuyahoga River about three miles north of Kent. The 769-acre reservoir, called Lake Rockwell, was designed to provide Akron with 25 million gallons of drinking water per day. Steam shovels were used to dig the lake, but 18-horse teams with plows were used to cut through the heavy clay.

A parade of 200 vehicles traveling from Akron to Lake Rockwell celebrated the opening of the new $5 million water plant. Ex-Mayor Sawyer and current Mayor Frank W. Rockwell both claimed credit for the safe drinking water. Akron initially installed 70 miles of street mains to distribute the water. The city pumped about 12 million gallons that first year.”

Horses Hauling Cast Iron Pipe for Akron Distribution System

August 15, 1922: “In support of the National Coast Anti-Pollution League, the Philadelphia Ledger writes of a time, 20 years beforehand, when fish were common in the Delaware River: ‘How [can] any sane person deliberately go into such black and vile-looking water? … [Only twenty years ago] the haul of the shad net brings that thrilling moment when the encircled fish break water and the whole surface enclosed in the arc of bobbing corks suddenly bursts into silver flame as a hundred fine big fellows leap and churn in a last desperate effort … There’s a lot more than sentiment in such reminiscences as these… They mean happiness and health in an age when the tendency is to sleep away from the turmoil and the ‘twice breathed air’ of the city… The lack of such things means millions of dollars in good, hard cash, to say nothing of the less material considerations. Philadelphia, of all cities, should support the Anti-Pollution League and should welcome the election of Gifford Pinchot to its presidency.’”

Commentary: Four days prior to the Ledger article, the National Coast Anti Pollution League was formed by state and municipal officials at Atlantic City, New Jersey to stop oil dumping. The rampant industrialization of the late 1800s and early 1900s had terrible consequences for the water resources of the U.S. Philadelphia bore more than its share of contaminated water and vanished fisheries. It would be many decades before these trends were permanently reversed. Based on what I saw in China in May of 2013, they should form a National Coast Anti Pollution League immediately and tackle their severe air and water pollution problems.

Gifford Pinchot, Forest Service head, Pennsylvania governor and president of the National Coast Anti-Pollution League

April 3, 1986: Death of Wendell R. LaDue

April 3, 1986: Death of Wendell R. LaDue. Wendell R. LaDue was a water supply visionary who made many improvements to the water supply for Akron, Ohio. He was born in Mt. Pleasant, Ohio on October 1, 1894. He earned his BS in Civil Engineering from the University of Southern California in 1918. Shortly afterwards, he joined the staff of the Akron Waterworks. “While serving as its manager, LaDue developed a watershed plan to insure adequate clean water supply. The plan included purchasing property along the Cuyahoga River and building a series of reservoirs. In 1932, the City of Akron began purchasing property along the Cuyahoga River in Geauga County and removing homes and farms to protect the watershed. LaDue oversaw the construction of the 695 acres Rockwell Lake, the 395 acres East Branch in 1938, and the 1,477 acres Akron City Reservoir, now called LaDue Reservoir, in 1961. The capacity of the three reservoirs is 10.5 billion gallons.

In 1947, LaDue founded the Akron-Canton Section of the American Society of Civil Engineers. In honor of his contributions, the Wendell R. LaDue Civil Engineer Award is awarded each year by the ASCE to a member who has promoted professionalism and the advancement of the civil engineering profession. In 1946 and 1947, LaDue was the president of the American Water Works Association. Since 2003, several Wendell R. LaDue Utility Safety Awards are presented by the AWWA to recognize distinguished water utility safety programs.

LaDue retired from the City of Akron in 1963, and began teaching at the University of Akron where he was awarded an honorary Doctorate of Engineering Degree.”

March 11, 1869: Akron Fire Impacts on Water Supply

Main Street, Akron, Ohio, 1875

Main Street, Akron, Ohio, 1875

March 11, 1869: Major fire in Akron, Ohio leads to early improvements in water service. The fire burned down all of the buildings between High and Main Streets. Soon after, the public demanded water reservoirs for fire safety. Citizens pooled their money to purchase large cisterns and in the early 1870s, eighteen cisterns were constructed throughout the city each holding 500 to 2,000 gallons. In 1880 M.S. Frost Consulting Engineers and a group of prominent local men negotiated a deal with the city to be the sole provider of water to the city. The company would construct a water system for Akron as long as the city would agree to pay $6,750 per year for water service to fight fires and to rent 150 fire hydrants that the company would install. In 1880 the M.S. Frost and Son sold the rights of the water deal to the Akron Water Works company headed by Frank Adams and George W. Crouse.

Commentary: Without doubt, the major reason to build centralized water systems in the 19th century was not to provide a water supply to a city. Pressurized water systems were needed to stop cities from burning to the ground.

#TDIWH—February 19, 1914: Large Steel Water Tank in Youngstown, OH

0219 Steel TankFebruary 19, 1914: Engineering News article. “A steel tank 100 ft. diameter and 50 ft. high, with a capacity of 2,938,000 gal., is being built at Youngstown, Ohio, in connection with the water-supply service. The design is shown in Fig. 1. There are ten rings of plate, with double-strap butt joints for the vertical seams. These have ten rows of rivets (staggered) in the first two rings, eight in the third, six up to the eighth ring, four in the ninth and two in the tenth or top ring. There is a 20-in. inlet pipe with lead- and oakum-calked joint in the bottom plate, and a 24-in. overflow pipe of 3/8-in. riveted plate….

The tank is built without a roof, but has around the top a steel balcony with hand-rail. This balcony not only serves as a walk but also acts as a horizontal girder to stiffen the top of the tank.

The riveting is done with a large compression yoke riveter, except that the riveting of the bottom and the balcony is done with air hammers. The yoke riveter is suspended from a stiff-leg derrick, as shown in Fig. 3. The mast of this derrick is pivoted in the center of the tank and each stiff-leg is mounted on a small truck riding on a circular track, so that the boom and derrick frame can revolve through a complete circle. The power plant, air compressor and hoisting engine are located just outside the tank. The estimated weight of the tank complete is approximately 500 tons, and there are about 70,000 field rivets.

Reference: “A Large Steel Water Tank.” 1914. Engineering News 71:8(February 19, 1914):412-3.

Commentary: Note the lead and oakum-caulked joint. Lead would still be used in water works facility construction for many decades after 1914. Also, note that the reservoir did not have a roof. Uncovered finished water reservoirs finally suffered their death blow with the USEPA regulation—Long Term 2 Enhanced Surface Water Treatment Rule. This story interested me because of the yoke riveter (on right center of Fig 3 with man standing on top) and derrick. This technology is long gone (I think), but it is interesting to see how they built reservoirs 99 years ago.

Stiff-Leg Derrick

Stiff-Leg Derrick

#TDIWH—February 13, 1913: Cleveland Sewage Treatment

0213 Cleveland Sewage studiesFebruary 13, 1913: Engineering News article. Sewage Disposal Investigations at Cleveland. By R. Winthrop Pratt. “SYNOPSIS-Preparatory to the design of sewage-treatment works for Cleveland, Ohio, a series of tests is being made of various methods of treating the sewage. The causes leading up to the decision to treat the sewage, and to make the tests before building the proposed works are outlined and then the testing station is described. The station includes grit chambers, screens and tanks for preliminary treatment, rapid filters or scrubbers, sprinkling filter, auxiliary settling tanks, and a disinfection plant for final treatment; tanks for dilution studies; sludge digestion tanks and sludge-drying beds, and an office and laboratory….

On July 25, 1905, the city appointed a commission of experts, consisting of Rudolph Hering, George H. Benzenberg and Desmond FitzGerald to study the general question of improved water-supply and sewerage for the city. This commission, about six months later, submitted a report in which was recommended:

(1) The extension of the water-works tunnel to a point about four miles from the shore.

(2) The construction of an intercepting sewer system to collect the sewage from the entire city and discharge the same into Lake Erie, at a point about 10 miles east of the Cuyahoga River. This intercepting sewer was to be designed to carry twice the dry-weather flow from one million people, on the basis of 200 gal. per capita, or a total of 400 gal. per capita per day. This plan involved several overflows into the lake and river to take care of the discharge in excess of the above amount.

(3) The construction of a river flushing tunnel and pumping equipment for the purpose of pumping clean lake water into the river above all local pollution, was recommended by two members of the commission.”

Reference: Engineering News 1913. 69:7(February 13, 1913): 287.