Tag Archives: Philadelphia

August 11, 1909: Queen Lane Reservoir Water Treated Chemically

Queen Lane Pump House Boilers

August 11, 1909: Municipal Journal and Engineer article. Queen Lane Reservoir Water Treated Chemically. “Philadelphia, Pa.-Though residents of that section of the city lying south of Allegheny avenue and between Sedgley avenue, Twenty-seventh street and the Schuylkill River have for more than two months supposedly been drinking absolutely raw, unfiltered water from the Queen Lane reservoirs, it became known recently that they have been using water that has been chemically purified by the city. Without letting the public into the secret, Chief Dunlap of the Water Bureau has had the bacteriologists of the Water Department improvise a station at the Queen Lane Reservoir for the oxidization of water by a chemical process which has proved highly effective. A shed has been erected at the intake of the reservoir, and all the water that is pumped from the river to the reservoir is ozonated or oxidized by chemical process as it passes through the shed. By oxidization all the animal or vegetable life is destroyed in the water, and it goes into the reservoir free from harmful impurities. Of course Chief Dunlap says this process does not clarify the water, but this is accomplished to a very large extent by precipitation or sedimentation [in Queen Lane Reservoir].”

Commentary: It is highly unlikely that ozone was being used to disinfect the water supply in Philadelphia in 1909 (in a shed by the river). More likely, the use of the term ozone referred to the chlorination of water, which supposedly released “nascent oxygen” which was responsible for killing bacteria. The same argument (some might say subterfuge) was used in the second Jersey City trial, which was going on during the time that this article was published. No water utility wanted to admit that it was using chlorine during this period. After the New Jersey Supreme Court approved the use of chlorine for drinking water disinfection in 1910, the linguistic jujitsu exemplified in this article was not as widely used.

Advertisements

May 28, 1914: Chlorination of Torresdale Filtration Plant in Philadelphia

May 28, 1914: Municipal Journal article. Disinfecting Philadelphia’s Water Supply. By Francis D. West. “Bleach was first used at Torresdale [now called the Samuel S. Baxter treatment plant] in the form of hypochlorite of soda, produced electrolytically, during September, 1909. Two cells manufactured by the National Laundry Co. were used. A current of 35 amperes at 110 volts was used to decompose a brine solution. The chlorine and soda were allowed to recombine and the temperature was so high (about 110° F) that chlorates were formed. The bleach was applied directly in front of the first valve of one of the preliminary filters operated at a 20 mgd rate, or about 1/4 normal.

The conclusions were in part that the bacterial efficiency of the filter was considerably less than that of filters operated at four times the rate without treatment.

Hypochlorite was again used in December 1910. Due to the fact that the bacterial efficiency of slow sand filters decreases considerably in cold weather and the fecal organism B. coli communis was present in the filtered water, it was decided to use chloride of lime to disinfect the water in the filtered water basin. Treatment was continued until April 1911, when it was stopped; was again started December 1911, and was continued without interruption until February, 1913.

Liquid chlorine was first used Nov. 26, 1913, in conjunction with chloride of lime about 90 lbs. of liquid and 800 lbs. of powder being used daily until Feb. 9, when the use of chloride of lime was stopped.

March 21, 1912: Philadelphia Filters Overtaxed

Plan of Belmont Filter Plant 1903; phillyh2o.org

March 21, 1912: Municipal Journal article. Unusual Conditions Overtax Filtration Plant. “Philadelphia, Pa.-Conditions of the water supply continue such that Director Neff persists in his warning that householders should continue to boil water for at least two weeks. This applies particularly to West Philadelphia, where the raw supply from the Schuylkill river went to the Belmont [slow sand] filter beds in such condition that the filters were incapable of extracting the bacteria as completely as would be possible under conditions that are normal. The recent heavy rains which scoured the hills and streams of the accumulation of all substances during the winter and sent it down the Schuylkill, produced such a condition as the city has not had to contend with since scientific treatment of the water supply was undertaken. While the water is clearing the danger will not have entirely passed for two weeks. The question of the use of chemicals in the West Philadelphia supply has been taken up. For two years chloride of lime has been utilized in the treatment of the supply filtered by the Torresdale plant, as a safeguard in destroying the bacteria. The advisability of providing some additional safeguard under such unusual emergencies as the present, when the water supplies of many cities are in practically the same condition as that of this city is now engaging the attention of Directors Neff, of Health and Charities, Cooke, of Public Works, and Chief Dunlap, of the Water Bureau.”

References: “Unusual Conditions Overtax Filtration Plant.” 1912. Municipal Journal article 32:12(March 21, 1912): 452.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Commentary: Boil water order for two weeks? Even after more than three years since the first introduction of chlorine into the Jersey City water supply, many cities were still reluctant to adopt the new technology wholesale. It was incidents such as the one described in the article, which led to better designs of filter plants (mechanical filtration) and universal application of chlorination.

Manual Cleaning of Belmont Slow Sand Filter Beds, 1905; phillyh2o.org

December 1, 1902: Leal Report to RI Board of Health; 1909: Philadelphia Typhoid Fight

Dr. John L. Leal

Dr. John L. Leal

December 1, 1902: Letter to Rhode Island State Board of Health. Dr. John L. Leal was hired by the Bristol [Rhode Island] and Warren Water Company after the Rhode Island State Board of Health severely criticized them about the sanitary quality of their water supply.

“Gentlemen: We hand you herewith a report upon the sanitary condition of the water supply of this company, of which we wrote you in our letter of October 10th.

This report was prepared by Dr. John L. Leal, and embodies the findings and conclusions of Prof. J.H. Appleton, Prof. F.P. Gorham, and Dr. F.T. Fulton, who, as well as Dr. Leal, made a thorough examination of the water in question and its sources.

John L. Leal, M.D., of Paterson, N.J., A.B., A.M., Princeton; ex-health officer of Paterson, N.J. (for thirteen years); Sanitary Adviser to the East Jersey Water Company (the largest [private] water company in America) and of the Montclair and of the New York & New Jersey Water Companies; President, New Jersey State Sanitary Association, etc., etc., is, we feel, an expert who, you will agree with us, is entirely competent to pass upon the subject at hand….

The findings conclusively establish, as Dr. Leal states in closing his report, that the conditions of the water and the water sheds “do not in any way justify the action of the Board of Health.”

We therefore request that your Board shall, in justice to ourselves and in the interest of those who take our water, withdraw as promptly as may be its recent recommendation to the town of Bristol, and take such other steps as will, as far as possible, make the effect caused by the unwarranted attack made by your Board in its action of October 3rd, upon the sanitary quality of the water and the water sheds of this company. Respectfully, George H. Norman, President.”

Reference: Twentieth-Fifth Annual Report of the State Board of Health, of the State of Rhode Island. 1910. (for the year ending December 31, 1902). Providence, RI:E. L. Freeman Co., 262-3.

Upper Roxborough Filters, with sand in place but before water was let in, 1903.

Upper Roxborough Filters, with sand in place but before water was let in, 1903.

December 1, 1909: An excellent summary of aggressive municipal measures to eradicate typhoid fever from a major city. Municipal Journal and Engineer. Philadelphia Wars on Typhoid. “In an address at the Philadelphia College of Pharmacy, Dr. A. C. Abbott, Director of the Hygienic Laboratory of the University of Pennsylvania, and former Chief of the Bureau of Health, drew some striking comparisons between the present mortality rate from typhoid fever in Philadelphia and that which existed five years ago. In that time, he declared, by simple municipal measures, such as water filtration, strict supervision of the milk supply, and the cleaning up of river banks, the number of cases of typhoid fever had been reduced by fully 8o percent. Nearly one-half of the remaining cases are imported from other places by Philadelphians returning from their vacations. Still stricter regulation of dairies, the thorough disinfection of all sewage refuse, and, most important of all, the greatest personal care in the treatment of typhoid patients were urged as sure preventives of the disease. The use of uncooked vegetables raised on land fertilized with unsterilized sewage; the eating of raw oysters, not cleanly washed or handled, and the fly pest, which was characterized as a ‘filthy, intolerable nuisance, a disgrace to our civilization,’ were emphasized by Dr. Abbott as easily avoidable causes of the spread of typhoid. Vaccination, as a means of becoming immune to the disease, was described as entirely practicable and effective.”

Reference: Municipal Journal and Engineer. 1909. 27:22(December 1, 1909): 826.

November 26, 1907: Birth of Ruth Patrick

1126 Dr Ruth PatrickNovember 26, 1907: Birth of Ruth Patrick. “Dr. Ruth Myrtle Patrick (November 26, 1907 – September 23, 2013) was a botanist and limnologist specializing in diatoms and freshwater ecology, who developed ways to measure the health of freshwater ecosystems and established a number of research facilities.

Dr. Patrick’s research in fossilized diatoms showed that the Great Dismal Swamp between Virginia and North Carolina was once a forest, which had been flooded by seawater. Similar research proved that the Great Salt Lake was not always a saline lake. During the Great Depression, she volunteered to work as a curator for the Academy of Natural Sciences, where she worked for no pay for ten years. Her work has been widely published and she has received numerous awards for her scientific achievements, including the Benjamin Franklin Medal for Distinguished Achievement in the Sciences in 1993, the National Medal of Science in 1996, the Heinz Award Chairman’s Medal in 2002, and the A.C. Redfield Lifetime Achievement Award in 2006. The Ruth Patrick Science Education Center in Aiken, South Carolina, is named after her.”

Commentary: In 1974, I took a course on biological limnology from this amazing woman. She brought in luminaries such as Luna Leopold noted fluvial morphologist to give lectures as well as providing some of the most interesting classes herself. One anecdote that that was told to me while I was taking her class concerns some work she did during WWII. She was asked to identify organisms from scrapings on the hulls of German U-boats that had been captured. Her knowledge of diatoms was so encyclopedic that she pinpointed the location of the U-boat pens, which helped the Allies destroy them.

October 1, 1896: Standpipe Failure; 1896: Philadelphia Filtration; 1913: Water Year Start

1001 Stand Pipe Failure at Garden City KansasOctober 1, 1896: Engineering News article. A Stand-Pipe Failure at Garden City, Kan. “Sir: A brief note in regard to the failure of the Garden City stand-pipe, another addition to the already large number of failures of these structures, may be of interest to the readers of Engineering News.

This stand-pipe was built by Palmer & Son, of Kansas City, Mo. It was located about one-fourth mile from the Arkansas River, and a few feet above its bed. It was 10 ft. in diameter, 130 ft. high, and was supported on a masonry foundation on a level with the surface of the ground…

About four years after erection a crack appeared on the west side of the pipe, in the angle iron connecting the bottom to the first course. This was soldered but continued to leak and about 21/2 years before the failure a new piece of angle, about 5 ft. long, was put in. Four of the six brackets had their legs broken about this time, and were repaired by bolting to them a strap of iron which passed down around the anchor bolt.

On April 30, 1896, during a very high wind from the northwest, estimated to have a velocity of 60 to 70 miles per hour, with occasional gusts of 90 miles, and which wrecked many of the windmills in this vicinity, a crack appeared on the north aide of the bottom angle iron. This crack increased in size for 11/4 hours, until it was 5 ft. long, with the water rushing out rapidly. Suddenly the angle iron to which the north guy was fastened gave way and the pipe blew over in the southwest direction. The pipe was about one-fourth full at the time of failure with both pumps delivering into it at nearly their full capacity.

The bottom angle iron broke at the angle all the way around except where the new piece was put in, where the first course failed along the rivets. All the brackets were broken, and the bottom was broken somewhat at its center around the entrance pipe.

It seems quite clear that the failure was due to three causes: (1) The weakness in the angle iron connecting the bottom and first course; (2) to the brackets not being long and strong enough; and (3) to the fastening of the guys being weak.

  1. C. Murphy, Hydrographer U. S. Geological Survey.”

Commentary: Sometimes we need to remember our failures as well as our successes. It was through an analysis of these failures that eventually water standpipes were properly designed and constructed in the U.S.

1001 Philadelphia Water Source ContaminationOctober 1, 1896: Engineering News article. Filtration of the Philadelphia Water Supply. “A vigorous crusade against the further use of Schuylkill River water, without filtration, is being led by the Woman’s Health Protective Association of Philadelphia, and the subject is being actively discussed by the press of that city. All admit that the present supply is impure, and that the water from this river is blackened with coal dust or made yellow by mud at every high stage In the river, and that it is liable to contamination from six cities upon its banks above Philadelphia, whose aggregate population Is 350,000. An entirely new supply, from a distant source of permanent purity, is undoubtedly the most attractive solution to the difficult problem presented, and for years put extensive surveys and investigations have been made with that end in view. But the enormous cost of such an undertaking, coupled with the lack of available means in the City Treasury and the disinclination to permit a private company to control the water supply of Philadelphia, have so far prevented any of the many projects of this sort which have been brought forward from being carried out.

Filtration has been often suggested, in Philadelphia. Several years ago certain parties backed by the city press, seriously recommended the location of filter-beds or filter-galleries In the River Schuylkill itself, an absurd scheme, which was dropped as soon as computations were made of the area required for the quantity of water to be filtered, the cost of construction, and the difficulties and risks of maintenance. But since the success of sand filtration as a means of purification of water has become generally understood, the intelligent citizens of Philadelphia have become strongly in favor of the construction of a system of filter beds. Our readers will recall that an appropriation to build a single filter-bed was before the Philadelphia Councils some months ago, and was only defeated by a close vote.

Recently the agitation for filtration has been started anew by the publication of a report upon the project of filtering the city’s water supply made to the Woman’s Health Protective Association by Mr. Allen Hazen, of the firm of Hazen & Noyes, of Boston.”

1001 Philadelphia TyphoidDeathRateCommentary: This article is important for several reasons. It highlights the struggle to choose between finding a “pure” upland source of water versus treating water supplies that were available locally. The fact that a citizens group got involved and hired Allen Hazen is notable. In the late 1890s, hundreds of cities were dealing with the same problem—contaminated water supplies. However, most of them did nothing for a long period of time and many people died. Philadelphia had a lot of trouble getting the political muscle organized to make it happen. An excellent website created by the Water Department historian highlights the struggle over filter construction. “Between 1900 and 1911, Philadelphia built a system of five [slow] sand filtration plants on high ground along the Delaware and Schuylkill rivers…Costing $28 million, the filtration system was the largest public works project in the city up to that time and the largest filtration works in the world.”

Reference: Engineering News. 36:14(October 1, 1896): 218-9.

1001 US-GeologicalSurvey-Seal.svgOctober 1, 1913: October 1 is the first day of a water year. “A water year is term commonly used in hydrology to describe a time period of 12 months. It is defined as the period between October 1st of one year and September 30th of the next. The water year is designated by the calendar year in which it ends. (the year within which 9 of the 12 months fall). Thus the 2010 water year started on October 1, 2009 and ended on September 30, 2010. Use of water year as a standard follows the US national water supply data publishing system that was started in 1913. This time interval is often used by hydrologists because hydrological systems in the northern hemisphere are typically at their lowest levels near October 1. The increased temperatures and generally drier weather patterns of summer give way to cooler temperatures, which decreases evaporation rates. Rain and snow replenish surface water supplies.”

August 11, 1909: Queen Lane Reservoir Water Treated Chemically

Queen Lane Pump House Boilers

Queen Lane Pump House Boilers

August 11, 1909: Municipal Journal and Engineer article. Queen Lane Reservoir Water Treated Chemically. “Philadelphia, Pa.-Though residents of that section of the city lying south of Allegheny avenue and between Sedgley avenue, Twenty-seventh street and the Schuylkill River have for more than two months supposedly been drinking absolutely raw, unfiltered water from the Queen Lane reservoirs, it became known recently that they have been using water that has been chemically purified by the city. Without letting the public into the secret, Chief Dunlap of the Water Bureau has had the bacteriologists of the Water Department improvise a station at the Queen Lane Reservoir for the oxidization of water by a chemical process which has proved highly effective. A shed has been erected at the intake of the reservoir, and all the water that is pumped from the river to the reservoir is ozonated or oxidized by chemical process as it passes through the shed. By oxidization all the animal or vegetable life is destroyed in the water, and it goes into the reservoir free from harmful impurities. Of course Chief Dunlap says this process does not clarify the water, but this is accomplished to a very large extent by precipitation or sedimentation [in Queen Lane Reservoir].”

Commentary: It is highly unlikely that ozone was being used to disinfect the water supply in Philadelphia in 1909 (in a shed by the river). More likely, the use of the term ozone referred to the chlorination of water, which supposedly released “nascent oxygen” which was responsible for killing bacteria. The same argument (some might say subterfuge) was used in the second Jersey City trial, which was going on during the time that this article was published. No water utility wanted to admit that it was using chlorine during this period. After the New Jersey Supreme Court approved the use of chlorine for drinking water disinfection in 1910, the linguistic jujitsu exemplified in this article was not as widely used.