Tag Archives: pollution

April 15, 1923: New York City Harbor Pollution

April 15, 1923: New York Times headline. Pollution of City’s Harbor Growing Peril to Health. By George A. Soper. “After having been apparently forgotten for some years there are signs that the pollution of New York Harbor may again receive official attention. The Chamber of Commerce of the State of New York, which took a leading part in bringing about the construction of the first rapid transit subway, the Catskill water supply and the Port Authority, has been inquiring into the state of the harbor waters with a view to the adoption of remedial measures. On Nov. 3, 1921, the Chamber passed a resolution urging municipal authorities in New York and New Jersey to take such steps as might be necessary to bring about a study of the matter, and on March 30, 1923, the Merchants’ Association sent a letter to Mayor Hylan calling attention to the polluted condition of the harbor.”

March 4, 1875: British Public Health Act Debated

Offscourings

Offscourings

March 4, 1875: British Public Health Act consolidates authority to deal with housing, water pollution, occupational disease, and other problems. On this date, an article appeared in The Nation that described the appalling conditions of drinking water in London: “It is no exaggeration to say that … there is hardly an unpolluted river in the whole of England. Between the sewage of towns and the offscourings of manufactories, distilleries, breweries, and the like, every stream and river in the country is poisoned and rendered unfit for domestic use. Sparkling brooks that not many years ago were frequented by speckled trout and silvery salmon are now transformed into gigantic cesspools, which a clean-living toad would be ashamed to haunt. No wise man or woman will touch a drop of London water until it has been boiled and filtered, and even then they will use as little of it as they can. The manufacturing interest will no doubt be roused if any attempt be made to interfere with their prerogative of public poisoning. But the good sense, not to say the newly- awakened terror, of the country will support the Government if their measure be wisely considered, and be calculated to promote the end it has in view. [The Nation. Mar. 4, 1875, p.11, “The Coming Measures.”]

December 22, 1877: Nascent Oxygen; 1998: Pollution Runs Through It

Nascent Oxygen Theory

Nascent Oxygen Theory

December 22, 1877: Publication date for “The Nascent State as Affecting Chemical Action.” (Davies 1877) Before we understood that oxidation-reduction reactions involved electron transfers, chemists theorized that oxygen existed in a “nascent state.” This state made it possible for oxidation reactions to take place. Such an outmoded chemistry concept is relevant to a discussion of the history of chlorination in the U.S.

The first continuous use of chlorine to disinfect a U.S. water supply occurred at Boonton Reservoir—the water supply for Jersey City, New Jersey. As recounted in a forthcoming book (The Chlorine Revolution), two trials defined the need for disinfection and documented how it happened. In the second Jersey City trial, Dr. John L. Leal claimed that chlorine was not responsible for killing bacteria. Instead, he put forth the long-standing theory that chlorine when added to water liberated something called nascent oxygen, and it was the nascent oxygen was responsible for disinfection. (McGuire 2013)

The concept of nascent oxygen originated with James Watt, who described the importance of liberated oxygen in the bleaching process. An equation suggested by Watt (Race 1918) showed chlorine producing oxygen when it was dissolved in water:

Cl2 + H2O = 2HCl + O

In which Cl2 = chlorine, H2O = water, HCl = hydrochloric acid, and O = nascent oxygen.

In a later, well-known publication, Albert D. Hooker stated the theory most clearly: “It should be well understood that chloride of lime, in its industrial application of bleaching, deodorizing, or disinfecting, does not act by its chlorine, but by its oxygen.” (Emphasis in original.) (Hooker 1913)

In 1918, Joseph Race described the controversy surrounding chlorine’s mode of action in water. Race stated that Fischer and Proskauer (1884) believed that chlorine was not directly toxic. Warouzoff, Winograoff, and Kolessnikoff (1886) found that chlorine gas killed airborne tetanus spores. Interestingly, Race quoted at length John L. Leal’s second-trial testimony supporting the theory of disinfection by nascent or potential oxygen. However, Race’s laboratory work in 1915–17 appeared to convince him that disinfection was caused by the direct toxic action of chlorine and not by nascent oxygen. (Race 1918)

Other publications reflected the confusion over chlorine’s mechanism of action. In his 1917 textbook, Ellms (who would testify in the second Jersey City trial) presented equations showing the formation of hypochlorous acid (HOCl) when chlorine was added to water. At this point in his discussion, he was correct. However, he then stated “The HOCL is decomposed into HCl and oxygen, which latter acts upon any oxidizable matter that may be present.” (Ellms 1917)

2HOCL à 2HCl + O2

In this case, HOCl = hypochlorous acid and O2 = oxygen.

“The energy liberated by the decomposition of the hypochlorous acid, as previously stated, explains the powerful oxidizing action of the evolved oxygen, and the destructive effect upon the microorganisms. Chlorine or the hypochlorites are therefore, merely agents for the production of oxygen under conditions which render it extremely active.” (Ellms 1917)

Abel Wolman and I.H. Enslow tried to put a stop to the nascent oxygen theory in 1919, but it persisted long after that. (Fair and Geyer 1954) We know now that HOCl exists in water in equilibrium with the dissociated hypochlorite ion and that the degree of dissociation is a function of the water’s pH.

HOCL ↔ OCl + H+

For this equation, OCl = hypochlorite ion and H+ = hydrogen ion.

In a textbook published in 1924, authors F.E. Turneaure and H.L. Russell tried to straddle the issue:

“The reaction of both hypochlorite and liquid chlorine in sterilization of water is substantially the same. The accepted theory is that the chlorine forms hypochlorous acid with the water setting free nascent oxygen which is considered the effective sterilization agent. Some authorities, however, contend that the chlorine itself has a toxic effect upon the bacteria.” (Turneaure and Russell 1924)

A 1935 rewrite of Sedgwick’s famous book on sanitary science favored the direct action of chlorine theory but did not totally discount the action by nascent oxygen.

“The mechanism by which chlorine brings about germicidal action is still undetermined. It is believed by some that the bacteria are destroyed because of the direct toxic effect of the chlorine. Others maintain that the introduction of chlorine into water results in the formation of hypochlorous acid—an unstable compound—which breaks up and liberates nascent oxygen and hydrochloric acid, the supposition being that the bacteria are destroyed by the nascent oxygen. . . . Since chlorine compounds can destroy bacteria even when oxygen is not liberated it would seem that those mechanisms that explain the germicidal action of chlorine without hypothesizing the formation of nascent oxygen have a more sound scientific basis.” (Prescott and Horwood 1935)

A 1944 publication by S.L. Chang appeared to put the controversy to rest: “The action of chlorine and chloramine compounds on cysts was attributed to the active chlorine which may oxidize or chlorinate the proteins in the protoplasm. The possibility of action by nascent oxygen liberated by HOCl was indirectly studied, and the evidence strongly indicated that this was unlikely to occur.” (Chang 1944) Since Chang’s publication, nascent oxygen has not been mentioned in professional publications except as a historical curiosity.

In their classic 1954 textbook on water and wastewater engineering, Gordon M. Fair and John C. Geyer addressed the historically curious concept and stated categorically that oxygen did not accomplish disinfection. It was chlorine in its various forms in water that was toxic to bacteria. (Fair and Geyer 1954) Like many a scientific theory that conveniently explained a troubling public relations problem, it took a lot of time to kill the nascent oxygen idea.

References:

  • Chang, S.L. 1944. “Destruction of Micro-Organisms.” Journal AWWA. 36:11 1192-1207.
  • Davies, Edward. 1878. “The Nascent State as Affecting Chemical Action.” The Pharmaceutical Journal and Transactions. 8: 485-6.
  • Ellms, Joseph W. 1917. Water Purification. New York City, N.Y.: McGraw-Hill.
  • Fair, Gordon M., and John C. Geyer. 1954. Water Supply and Waste-water Disposal. New York City, N.Y.: John Wiley & Sons, Inc.
  • Hooker, Albert D. 1913. Chloride of Lime in Sanitation. New York City, N.Y.: John Wiley & Sons.
  • McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver:American Water Works Association, 2013.
  • Prescott, Samuel C. and Murray P. Horwood. 1935. Sedgwick’s Principles of Sanitary Science and the Public Health: Rewritten and Enlarged. New York:McMillan.
  • Race, Joseph. 1918. Chlorination of Water. New York City, N.Y.: John Wiley & Sons.
  • Turneaure, F.E., and H.L. Russell. 1924. Public Water-Supplies: Requirements, Resources, and the Construction of Works. 3rd Edition. New York City, N.Y.: John Wiley & Sons, Inc.
Polluted South Platte River

Polluted South Platte River

December 22, 1998: New York Times headline—Observatory: Pollution Runs Through It. “A river is like a highway, flowing through the landscape. Unfortunately, according to a new study, it is also like a car, polluting the air as it rolls along.

 

Scientists from the United States Geological Survey, in a study of the South Platte River in Nebraska and Colorado, determined that the river gives off large amounts of nitrous oxide, a gas that acts as a catalyst in the destruction of ozone in the atmosphere.

 

Like many rivers, the South Platte is rich in nitrates and ammonium, from agricultural runoff and the discharges from sewage treatment plants.

 

Microbes turn these nitrogen sources into nitrous oxide. The researchers, whose work was published in the Internet edition of Environmental Science and Technology, found that the river in many places was supersaturated in nitrous oxide, with the result that much of it entered the atmosphere.

 

The scientists estimated that the amount of the gas emitted along a 450-mile stretch of the river each year was equivalent to that produced by all the worst sewage treatment plants in the United States.

 

And although they said more studies were needed, they added that if the South Platte is typical, as seems likely, rivers are a major source of man-made nitrous oxide pollution.”

December 18, 1913: Atlanta Public Health; 1913: Fox River Pollution

1218 Atlanta Public HealthDecember 18, 1913: Municipal Journal article—Organizing Public Health Service. “Like most other municipal departments which have developed from small beginnings, the boards of public health in most of our cities are in need of reorganization, not only within themselves but in their relations to other departments of the city government generally. Several cities have employed experts in this line of business to make a survey of the public health situation and recommend improvements therein. One of the latest reports resulting from such a survey is that recently made to the Chamber of Commerce of Atlanta, Ga., by Franz Schneider, Jr., of the Russell Sage Foundation.

It does not appear from this report that conditions at Atlanta were found to be either very much better or very much worse than those in the majority of our reasonably well-governed cities. It is found, for instance, that a large part of the energy of and appropriation made to the Board of Health is used in street cleaning and garbage disposal, which have a comparatively small effect upon the health of the community—a condition that can be found in a great many cities.”

Commentary: Vestiges of the miasma theory of disease lasted well into the 20th century. Removing bad smells by cleaning streets did nothing to reduce the incidence of disease. If the money used to clean streets had been spent on treating the water supply, many lives could have been saved in the U.S.

Reference: Municipal Journal. 1913. 35:25, 828 and 833.

1218 Fox River PollutionDecember 18, 1913: Municipal Journal article—To Prevent Fox River Pollution. “Geneva, Ill.-Acting under authority conferred at the last session of the legislature, the State Rivers and Lakes Commission has ordered officials of the cities of Batavia, Aurora, Geneva, Elgin and St. Charles to take immediate steps to prevent the pollution of Fox river by sewage and factory wastes. The five cities were given until April 7, 1914, to prepare plans and specifications for filtration or sewage disposal plants or otherwise prepare to discontinue the emptying of sewage into the river. The Fox river cases are the first of the sort to be acted upon by the commission. Similar action will be taken in numerous other cities located along Illinois rivers or lakes if complaints are made and substantiated. Lake Forest and other North Shore cities that have complained of lake water pollution by factories are expected to take their grievances to the commission. Witnesses before the commission testified that during low water periods the Fox river was polluted to such an extent as to he a serious menace to the health of 200,000 inhabitants of the Fox river valley. It was also shown that thousands of tons of ice were taken from the river every year and sold in these cities and in Chicago. Another objection to the emptying of sewage into the river was the fact that fish were unable to survive.”

Commentary: River commissions in several states were beginning to take action against the grossest pollution problems in the early part of the 20th century.

September 13, 1987: Ocean Pollution Warning

0913 Dead fish and garbageSeptember 13, 1987:  New York Times headline–“Pollution of Summer ’87 Seen as Oceanic Warning.” Along the East Coast, where tides have been running an ugly brown and garbage washes ashore, where some waters have become unsafe for swimming and lethal to a multitude of fish, the summer of 1987 should be viewed as a cautionary tale, environmental experts and Government officials say.

The unpleasant summer, which cast a pall on thousands of vacations, was a demonstration of how delicate the ecosystem balance is in the marine environment. Experts agree that the problems, the result of conditions long established, will be repeated from time to time. And few think that enough is being done about them. Much of the blame for the pollution was leveled at wastewater discharges.

August 19, 1908: Passaic River Pollution Case

1895 Map of Paterson, NJ. Note how the Passaic River practically surrounds the city.

1895 Map of Paterson, NJ. Note how the Passaic River practically surrounds the city.

August 19, 1908: Municipal Journal and Engineer article. Stream Pollution Decisions. “In the State of New Jersey an award was recently made by Vice-Chancellor Stevens of the State Court of Chancery in the case of damages claimed to be caused by the pollution of the Passaic river, which introduced some novel methods which may probably be accepted as a precedent in other cases. The city of Paterson discharges sewage into the stream and, the Courts of the State having ruled that riparian owners below the outlets could not claim damages unless the stream received more sewage than it could dilute to an inoffensive condition, no action was taken at first. In time, however, it became evident that a nuisance was being created and complaints to the Paterson Board of Health, to the State Board of Health and to the Legislature having resulted in no abatement of the same, owners of about twenty of the riparian properties, each from 150 to 600 feet deep, brought a suit for injunction to restrain the city from damaging the property owners. The court ruled that an injunction which would prevent the city from using its sewers would work a far greater injury than that being suffered by the property owners, and ordered that instead the city should pay damages in amounts to be settled by a Court of Equity.

Action in such a court was accordingly brought and the city agreed that it would cease polluting the river in the manner complained of within five years from that time. The matter therefore resolved itself into a determination of the amount of damages inflicted upon the owners from the time the damage began until the time promised for its discontinuance. In fixing the first date a large amount of testimony, both expert and otherwise, was taken by the court; but the former, calculated to show what amount of sewage can be discharged into a stream without creating a nuisance, was apparently considered of minor importance by the court. The testimony of the property owners indicated that not until 1892 did the condition of the river have any appreciable influence on the use of the stream for fishing or bathing, but that from then on the evidence of sewage pollution became marked. This date was, accordingly, accepted by the court as that when the damage began, although the plaintiff endeavored to have it made earlier on the ground of the water being rendered unfit for drinking purposes as soon as sewage began to be discharged into it. This last contention was not admitted, however, as there was already such danger from other communities before the Passaic sewers were built.

The fixing of the amount of damages was even more complicated and difficult than determining their duration. The city contested that it was not responsible for contamination due to storm water from the streets, and the court admitted this to a degree only, holding that the city was not responsible for such storm water as flowed over the surface to the river, but was responsible for that discharged thereinto through the sewers. The contention of the city that it should not be held responsible for such injury as would have been done the river by a city of the same size as Paterson, but without sewers, was not admitted by the court. It was also contended that the industrial establishments of the city should stand their proportionate parts of whatever award was made, and although the court appeared to consider the city as responsible for about three-fourths of the total pollution and the industries for one-fourth, it does not appear to either admit or deny this contention, probably leaving this for settlement between such industries and the city.”

Commentary: This case shows the evolution of legal and scientific thought on river pollution after the turn of the 20th century. Note that the concept of dilution was losing favor as the impacts of sewage discharge into a watercourse were becoming better understood. Also it is interesting to note the discussion of stormwater and its impact on surface water quality. I believe that rulings such as this and new laws passed by the states were the defining events that led to an improvement in the water quality of rivers in the U.S. The judge in this case was Frederic W. Stevens who as vice chancellor of the Chancery Court of New Jersey was handling, at the same time, the case between Jersey City and the private water company that built the new water supply at Boonton Reservoir.

Dr. John L. Leal had interests in both cases. For ten years (1890 to 1899), he was the public health officer for Paterson, New Jersey. In his last few annual reports to the mayor, he urged that a solution to the water contamination from Paterson sewage discharges on the Passaic River be pursued. Ultimately, an intercepting sewer was built along the Passaic River, which collected all manner of domestic and industrial waste for discharge into New York Harbor. Eventually, a sewage treatment plant was built to treat the wastes. Leal’s involvement as an expert witness in the Jersey City lawsuit is covered in my book, The Chlorine Revolution.

Reference: McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

August 15, 1915: Akron Water System Begins Operation; 1922: National Coast Anti Pollution League

Akron Water Treatment Plant, 1915

Akron Water Treatment Plant, 1915

August 15, 1915: Akron Water System Begins Operation. “A century ago, Akron was a very unhealthy community. In 1915, 126 people came down with typhoid fever — with 25 deaths. The deaths and illnesses in Akron and other American cities were caused by contaminated drinking water.

Akron’s problem started to disappear in 1915 when the city opened its new reservoir and new water-treatment plant in Portage County — plus lines to bring that water into Akron.

The new system went into operation Aug. 15, 1915 — 100 years ago this Saturday. And before long, typhoid cases diminished.

In 1920, Akron had eight typhoid deaths. By 1925, the death toll had dropped to two.

Today, Akron’s water system remains one of the city’s biggest assets. The city has invested $3 billion in the water system in the last 100 years, says Jeffrey Bronowski, Akron’s Water Supply Bureau manager.

Akron’s efforts to overhaul its water system began in 1910. That’s when Mayor William T. Sawyer and City Council decided to create a whole new water system.

On Aug. 28, 1911, an engineering team recommended that Akron buy land and build a reservoir north of Kent on the Cuyahoga River. That would serve as Akron’s main water source, with large pipelines running from the reservoir’s water-treatment plant to Akron.

It was a costly $30 million step, but a major typhoid outbreak in 1911 resulted in 40 deaths in Akron that summer.

The recommendation came from two consulting engineers: Frank A. Barbour of Boston and E.G. Bradbury of Columbus, who played a key role in developing Akron’s new system. They were paid $10,000 by the city.

They analyzed the city’s options, including the Cuyahoga River, the Portage Lakes, the Tuscarawas River, the Little Cuyahoga River and the Congress Lake area.

They told Akron that the best water came from the Cuyahoga River watershed. There were fewer people there and less pollution. The watershed was also bigger and capable of producing more water.

What they envisioned was a series of reservoirs away from the city, much like what New York City was planning.

Before the report was released, Akron Mayor William Sawyer and Service Director John Gauthier began buying options on more than 2,000 acres of land in the Cuyahoga River watershed for about $150 an acre.

The two consultants were then hired by Akron to oversee building the new water system. Work began in 1913. A dam 280 feet long was built on the Cuyahoga River about three miles north of Kent.

The 769-acre reservoir, called Lake Rockwell, was designed to provide Akron with 25 million gallons of drinking water per day. Steam shovels were used to dig the lake, but 18-horse teams with plows were used to cut through the heavy clay.

A parade of 200 vehicles traveling from Akron to Lake Rockwell celebrated the opening of the new $5 million water plant.

Ex-Mayor Sawyer and current Mayor Frank W. Rockwell both claimed credit for the safe drinking water.

Akron initially installed 70 miles of street mains to distribute the water. The city pumped about 12 million gallons that first year.”

Horses Hauling Cast Iron Pipe for Akron Distribution System

Horses Hauling Cast Iron Pipe for Akron Distribution System

August 15, 1922: “In support of the National Coast Anti-Pollution League, the Philadelphia Ledger writes of a time, 20 years beforehand, when fish were common in the Delaware River: ‘How [can] any sane person deliberately go into such black and vile-looking water? … [Only twenty years ago] the haul of the shad net brings that thrilling moment when the encircled fish break water and the whole surface enclosed in the arc of bobbing corks suddenly bursts into silver flame as a hundred fine big fellows leap and churn in a last desperate effort … There’s a lot more than sentiment in such reminiscences as these… They mean happiness and health in an age when the tendency is to sleep away from the turmoil and the ‘twice breathed air’ of the city… The lack of such things means millions of dollars in good, hard cash, to say nothing of the less material considerations. Philadelphia, of all cities, should support the Anti-Pollution League and should welcome the election of Gifford Pinchot to its presidency.’”

Commentary: Four days prior to the Ledger article, the National Coast Anti Pollution League was formed by state and municipal officials at Atlantic City, New Jersey to stop oil dumping. The rampant industrialization of the late 1800s and early 1900s had terrible consequences for the water resources of the U.S. Philadelphia bore more than its share of contaminated water and vanished fisheries. It would be many decades before these trends were permanently reversed. Based on what I saw in China in May of 2013, they should form a National Coast Anti Pollution League immediately and tackle their severe air and water pollution problems.

Gifford Pinchot, Forest Service head, Pennsylvania governor and president of the National Coast Anti-Pollution League

Gifford Pinchot, Forest Service head, Pennsylvania governor and president of the National Coast Anti-Pollution League