Tag Archives: public health

October 13, 1821: Birth of Rudolf Virchow; 1986: Hudson River as Source of Water for NYC

October 13, 1821:  German physician Rudolf (Carl) Virchowwas born.  He was  famed for cell theory, founded the medical journal Medical Reform(Medicinische Reform), and wrote “Report on the Typhus Epidemic in Upper Silesia.” He was also was a well-known pathologist, anthropologist and statesman, widely credited for his advancements in public health.   Later in life, Virchow fought for improving the health and welfare service, meat inspections, and the first four urban hospitals in Berlin. He encouraged water and sewage system development.

Hudson River at Poughkeepsie

October 13, 1986:  New York Times headline–Report Backs Hudson as Water Source. ”Supplementing New York City’s water supply of 1.5 billion gallons a day with up to 300 million gallons from the Hudson River is feasible, an engineering study commissioned by the city has concluded.

But even before the study has officially been made public, concern has been mounting here in the Hudson Valley about the potential impact of such withdrawals, which have been called the only realistic means of meeting the city’s water needs by the year 2000.

‘If New York City were to take 300 million gallons from the Hudson, the major question is: would there be enough for us?’ said Herbert Hekler, chairman of the water supply committee of the Hudson Valley Regional Council. Several municipalities in the fast-growing Hudson Valley, including the city of Poughkeepsie, rely on the river as their sole source of drinking water.”

Commentary:  Mayor Koch called for universal metering in the city to cut water use and that is exactly what happened. There was no need to tap the Hudson after all.

Advertisements

October 11, 1961: Dedication of LaDue Reservoir; 1989: Water-Main Break Spews Asbestos Into 8th Ave.; 1988: Less Lead in Rivers

October 11, 1961:  Dedication of Wendell R. LaDue Reservoir. LaDue Reservoir is a water supply, flood control and recreation reservoir located in Geauga County, Ohio, in the northeastern part of the state. The reservoir was originally called the “Akron City Reservoir” before it was renamed for Wendell R. LaDue. Wendell R. LaDue was a water supply visionary who made many improvements to the water supply for Akron, Ohio. He was born in Mt. Pleasant, Ohio on October 1, 1894. He earned his BS in Civil Engineering from the University of Southern California in 1918. Shortly afterwards, he joined the staff of the Akron Waterworks.

While serving as its manager, LaDue developed a watershed plan to insure adequate clean water supply. The plan included purchasing property along the Cuyahoga River and building a series of reservoirs. In 1932, the City of Akron began purchasing property along the Cuyahoga River in Geauga County and removing homes and farms to protect the watershed. LaDue oversaw the construction of the 695 acres Rockwell Lake, the 395 acres East Branch in 1938, and the 1,477 acres Akron City Reservoir, now called LaDue Reservoir, in 1961. The capacity of the three reservoirs is 10.5 billion gallons.

In 1947, LaDue founded the Akron-Canton Section of the American Society of Civil Engineers. In honor of his contributions, the Wendell R. LaDue Civil Engineer Award is awarded each year by the ASCE to a member who has promoted professionalism and the advancement of the civil engineering profession. In 1946 and 1947, LaDue was the president of the American Water Works Association. Since 2003, several Wendell R. LaDue Utility Safety Awards are presented by the AWWA to recognize distinguished water utility safety programs.

LaDue retired from the City of Akron in 1963, and began teaching at the University of Akron where he was awarded an honorary Doctorate of Engineering Degree.”

October 11, 1989New York Times headline–Water-Main Break Spews Asbestos Into 8th Ave. “A water main burst at the intersection of Eighth Avenue and West 43d Street yesterday, sending asbestos-laden mud gurgling up the avenue and cascading down onto the IND subway tracks below, officials said.

The police closed West 43d Street and blocked off several lanes of Eighth Avenue while the City Department of Environmental Protection tested the mud to determine the level of asbestos, which was scattered from underground steam pipes.

A spokeswoman for the environmental agency, Tina Casey, said that the first round of tests showed varying amounts of asbestos, with one sample above ground containing 60 percent. Anything greater than 1 percent asbestos is considered hazardous, she said.”

October 11, 1988New York Times headline–Science Watch; Less Lead in Rivers. “A decline in lead contamination in major American rivers has been found at two-thirds of 300 sites studied from 1974 to 1985, scientists at the United States Geological Survey have reported.

The report chiefly attributed the decline to a 75 percent drop in use of leaded gasoline in that period. The most rapid drop in lead content was recorded from 1979 to 1980, when use of leaded gasoline took its sharpest drop.

Preliminary analyses of more recent data indicate that the decline in lead contamination is continuing.”

September 26, 1994: Tucson Shuts off CAP Supply; 1908: First Chlorine Use in US; 1855: Handle Put Back on Broad Street Pump

September 26, 1994:  Tucson Shuts off Direct Delivery of Central Arizona Project Water Supply.Corrosive water destroying pipes in a major American city preceded the events in Flint, Michigan by over two decades. On November 4, 1992, the water department for Tucson, Arizona, (Tucson Water or TW) began delivery of a new water supply: treated surface water from the Central Arizona Project (CAP)—primarily Colorado River water. Putting treated CAP water into the TW distribution system caused a corrosion problem that resulted in colored water (e.g., rusty, red, orange, yellow and brown) flowing from customer taps. Tucson’s introduction of CAP water is a story of mistakes committed at all levels of the utility and by the Tucson City Council.

Technical mistakes included not preparing the distribution system to receive a more complex surface water supply. TW was a groundwater utility that relied on about 200 wells distributed throughout the system. Recognizing their lack of experience with treating surface water, they hired treatment plant operators from other utilities to run the new $80 million leading-edge-technology treatment plant. Unfortunately, the same level of focus and preparation was not applied to the aging distribution system, which received, literally overnight, a chloraminated supply to half its customers from a single point of entry.

One of the biggest mistakes was not testing the impact of treated CAP water on corroded galvanized steel pipes. There were about 200 miles of this 2-inch substandard pipe in the system. When treated CAP water hit these pipes, the iron corrosion deposits inside the pipes were stripped away causing colored water, taste and odor problems, and damage to home plumbing, appliances and property due to flooding.

There was a rush to deliver CAP water and to hold down costs to the detriment of needed studies, which would have shown that raising the treated water pH for corrosion control was the proper approach.

Also high on the list of pre-delivery problems was a lack of political will to replace the substandard galvanized and reline the old cast iron street mains. The presence of these substandard pipes made the TW distribution system ripe for a catastrophic corrosion problem due to unsound corrosion control practices.

Delivery of CAP water was terminated on September 26, 1994, because of the inability of TW to control the colored water problem and the resulting political uproar. The $80 million treatment plant was shut down and has not been used since.

After a series of management resignations and firings over several years, Tucson hired David Modeer as the Director of TW. Modeer and his management team put the utility on the road to recovery. Along with a carefully planned technical program to select the correct corrosion treatment and deal with the taste and odor problems, an innovative public information campaign that also included a public apology for the CAP debacle, began to restore the credibility of TW. Customers were invited to actively participate in determining the future use, treatment and quality of CAP water via such methods as consumer preference research and participation in an extensive bottled water program. 

After the voters defeated a proposition in 1999 that would have severely limited the ability to use CAP water in the future, TW completed an aquifer storage and recovery project in the nearby Avra Valley. The Central Avra Valley Storage and Recovery Project (CAVSARP) allowed the utility to fully use its CAP allotment and serve a recovered groundwater/recharged CAP water mix that was accepted by TW customers. Tucson Water turned around a disaster into a singular success. Because of its ability to conjunctively use CAP water and groundwater, Tucson is now one of the more drought-resistant communities in the Southwest.

Commentary:  At this writing, Marie Pearthree and I are very close to finishing a first draft of a book about what happened in Tucson before, during and after the corrosion problem doomed their new water supply, entitled:  Tucson Water Turnaround:  Debacle to Success. A wealth of material has revealed previously unknown information related to TW’s problems. The results of these efforts are much-needed lessons for water utilities on how to avoid TW’s mistakes and how to successfully introduce a new water supply. We will be giving papers on what we have found during our research at several venues in 2017 and 2018. Watch @CaptDocMike on Twitter for presentation times, dates and locations.

Building on the right housed the chloride of lime feed facility at Boonton Reservoir

September 26, 1908:  110thanniversary of the first day of operation of the chlorination facility at Boonton Reservoir for Jersey City, NJ.  This was the first continuous use of chlorine in the U.S. for drinking water disinfection.

In the field of water supply, there were big moves afoot in the state of New Jersey at the turn of the 20th century. Jersey City had suffered with a contaminated water supply for decades causing tens of thousands of deaths from typhoid fever and diarrheal diseases. In 1899, the City contracted with the Jersey City Water Supply Company to build a dam on the Rockaway River and provide a new water supply. The dam created Boonton Reservoir, which had a storage capacity of over seven billion gallons. One of the company’s employees, Dr. John L. Leal, would have an enormous impact on this water supply and the history of water treatment. Leal was a physician, public health professional and water quality expert. Leal’s job with the company was to remove sources of contamination in the Rockaway River watershed above the reservoir. Water from the project was served to the City beginning on May 23, 1904.

When it came time for Jersey City to pay the company for the new water supply, they balked. The price tag was steep—over $175 million in current dollars. Using newly developed bacteriological methods, consultants for the City claimed that the water was not “pure and wholesome,” and they filed suit against the company to get a reduced purchase price. The trial that resulted pitted the water quality experts of the day against one another in a battle of expert witnesses.

The opinion of the judge was published on May 1, 1909. In that opinion, Vice Chancellor Frederic W. Stevens said that Boonton Reservoir did a good job on average of reducing the bacteria concentrations in the water provided. However, he noted that two to three times per year, especially after intense rainstorms, the reservoir short-circuited and relatively high bacteria levels resulted.

Rather than build expensive sewers that would deal with only part of the bacteria contamination problem (an early recognition of non-point source pollution) Leal and the company attorney argued to install “other plans or devices” that would do a better job. The judge agreed and gave them a little over three months to prove their idea. Leal had decided in May 1908 that it was time to add a chemical disinfectant to drinking water. He was all too familiar with the suffering and death caused by typhoid fever and diarrheal diseases. He knew of some successful instances of using forms of chlorine in Europe, but nothing had been attempted in the U.S. on such a large-scale basis.

Leal was convinced that adding a disinfectant to the Jersey City water supply was the best course. He had done laboratory studies that convinced him that a fraction of a ppm of chlorine would kill disease-causing bacteria. In the face of the certain disapproval of his peers and possible condemnation by the public, he moved forward.

However, no chlorine feed system treating 40 million gallons per day had ever been designed or built and if the feed system failed to operate reliably, all of the courage of his convictions would not have amounted to much. He needed the best engineer in the country to do the work. He needed George Warren Fuller. In 1908, Fuller was famous for his work in filtration. He had designed an aluminum sulfate feed system treating 30 million gallons per day for the Little Falls treatment plant. On July 19, 1908, Leal left his attorney’s office in Jersey City and took the ferry to Manhattan. In Fuller’s office at 170 Broadway, he hired the famous engineer (undoubtedly on the basis of a handshake) and told him that the bad news was that he needed the work done in a little over three months.

Ninety-nine days later, the chlorine feed system was built and operational. Calcium hypochlorite (known then as chloride of lime or bleaching powder) was made into a concentrated solution, diluted with water and fed through a calibrated orifice to the water before it traveled by gravity to Jersey City. The feed system worked flawlessly from day one and continued to operate successfully for all of the following days. Liquid chlorine eventually replaced chloride of lime, but September 26, 2013, marks the 105th anniversary of the first continuous use of chlorine on a water supply—the longest period of water disinfection anywhere in the world.

Reference:  McGuire, Michael J. 2013. The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Broadwick (formerly Broad) Street showing the John Snow memorial and public house

September 26, 1855:  The St. James Board of Commissioners of Paving voted 10 to 2 to reopen the Broad Street pump at the urging of local residents.  Dr. John Snow had prevailed upon them a year earlier to remove the pump handle after he presented his evidence that cholera deaths were geographically clustered around the well site.

Reference: Vinten-Johansen, Peter, Howard Brody, Nigel Paneth, Stephen Rachman and Michael Rip. Cholera, Chloroform, and the Science of Medicine. New York:Oxford University, 2003, 310.

September 12, 1909: Typhoid Fever in Seattle

Alaska Yukon Pacific Exposition

September 12, 1909:  Seattle health officials reported an outbreak of typhoid fever, later associated with the contamination of drinking water at the Alaska-Yukon-Pacific (A-Y-P) Exposition, on the campus of the University of Washington. Officials were not able to pinpoint the cause of the outbreak. By the end of 1909, 511 people–including about 200 A-Y-P visitors–were sickened by the disease, and 61 died.

September 11, 2001: Drinking Water Security

September 11, 2001:  The terrorist attacks of September 11, 2001 in New York and Washington, D.C. catapulted drinking water securityto the forefront. In 2002, the U.S. Congress enacted the Public Health Security and Bioterrorism Preparedness and Response Act. With respect to water supplies, this legislation amended the Safe Drinking Water Act and specified actions that community water systems and the EPA must take to improve the security of the nation’s drinking-water infrastructure. Vulnerability Assessments were conducted at hundreds of drinking water installations across the U.S.

September 10, 2008: Last Issue of safedrinkingwater.com NEWS Posted

September 10, 2008:  The last issue of safedrinkingwater.com NEWS was posted.  SDW.com NEWS was a weekly newsletter devoted to media stories and commentary about drinking water quality that was published by McGuire Environmental Consultants, Inc. Publication ceased after eight years because the cost of producing the newsletter became prohibitive.  The spirit of the newsletter has been incorporated into the blog:  safedrinkingwaterdotcom.  Also, the historical file of the newsletter was recently restored and can be accessed at www.safedrinkingwater.com.  Amazingly, many of the hyperlinks still work.

The people who put the newsletter together included:  Chet Anderson as Senior Editor, Jennifer Smith as Managing Editor, Erica Rosen as Webmaster and myself as Publisher. We were a great team!

September 9, 2011: Regulation of Pharmaceuticals in Drinking Water

September 9, 2011:  A New York Times article published on this dayaddressed the lack of regulations on drugs in drinking water.  Five years after the federal government convened a task force to study the risks posed by pharmaceuticals in the environment, it was no closer to understanding the problem or whether these contaminants should be regulated under the Clean Water Act. That was the finding of a report from the Government Accountability Office. Many studies have found traces of pharmaceuticals, including antibiotics, hormones, and antidepressants, in municipal water supplies over the past few years.