Tag Archives: sanitary survey

December 3, 1842: Birth of Ellen Swallow Richards; 1907: Definition of Sanitary Engineer

Ellen Swallow RichardsDecember 3, 1842Ellen Swallow Richards was born.“Ellen Swallow Richards is perhaps best known as MIT’s first female graduate and instructor, but launching coeducation at the Institute is merely the first in a long list of her pioneering feats. The breadth and depth of her career are astounding; a 1910 tribute in La Follette’s Weekly Magazine professed that ‘when one attempts to tell of the enterprises, apart from her formal teaching, of which Mrs. Richards has been a part or the whole, he is lost in a bewildering maze.’ Authors and scholars have called her the founder of ecology, the first female environmental engineer, and the founder of home economics. Richards opened the first laboratory for women, created the world’s first water purity tables, developed the world standard for evaporation tests on volatile oils, conducted the first consumer-product tests, and discovered a new method to determine the amount of nickel in ore. And that’s just the short list of her accomplishments. In a nod to Richards’s remarkable knowledge and interests, her sister-in-law called her ‘Ellencyclopedia….’

Ellen Swallow Richards

MIT Laboratory with Normal Chlorine Map for Massachusetts on the Wall

Richards’s research on water quality was even more far-reaching. In 1887 [William R.] Nichols’s successor [Thomas M. Drown] put her in charge of implementing an extensive sanitary survey of Massachusetts inland waters, again for the board of health. The two-year study was unprecedented in scope. Richards supervised the collection and analysis of 40,000 water samples from all over the state–representing the water supply for 83 percent of the population. She personally conducted at least part of the analysis on each sample; the entire study involved more than 100,000 analyses. In the process, she developed new laboratory equipment and techniques, meticulously documenting her findings. Instead of merely recording the analysis data, she marked each day’s results on a state map–and noticed a pattern. By plotting the amount of chlorine in the samples geographically, she produced the famous Normal Chlorine Map, an indicator of the extent of man-made pollution in the state. The survey produced her pioneering water purity tables and led to the first water quality standards in the United States. Her biographer, Caroline Hunt, contends that the study was Richards’s greatest contribution to public health.”

Commentary:  There is a rich body of information about the life Ellen Swallow Richards. A video on YouTubewith ESR expert Joyce B. Milesnarrating is particularly interesting. Below is the Normal Chlorine Map from a book by Ellen Swallow Richards. It shows that chloride concentrations in ground and surface waters increase as one nears the coastline of the Atlantic Ocean. Any significant deviations from the “normal” levels of chloride in a water source indicated sewage contamination.

References: Durant, Elizabeth. (2007). “Ellencyclopedia.” MIT Technology Review. August 15, 2007.

sanitary engineering

Mahoning Co. Ohio Sanitary Engineering

December 3, 1907: Address of President of the American Society of Mechanical Engineers. During his address on the function of engineering society, he gave a succinct definition of the sanitary engineer. “The sanitary engineer is a specialist in hydraulic engineering in the applications of water supply and drainage as means to secure the well being of the community as respects its public health. His field expands from that of the wise precautions respecting the piping of the individual house, where he touches the craftsmanship of the plumber, up to the broadest problems of sewage disposal and utilization, and the healthful supply of potable water for cities, free from bacterial or inorganic pollution at its source or in transit. His co-workers are the bacteriologist and the physician. It would seem more serviceable however for the purpose in hand to group such men with what are hereafter to be called the civil engineers.” (Hutton 1907)

In an article published two years later, a suggested list of courses for the well-trained sanitary engineer was recommended. “In order to be able to make use of the forces of nature for the promotion of the comfort, health and welfare of mankind, it is necessary to study and to become conversant with them; hence, training in the natural sciences and in mathematics forms the basis of sanitary as well as of all other branches of engineering. The study should include mathematics (arithmetic, algebra, geometry, trigonometry and stereometry), astronomy and descriptive geometry; likewise, the physical sciences, mechanics and dynamics, hydrostatics and hydraulics, aerostatics and aerodynamics; the theory of heat, optics, acoustics, magnetism and electricity. It is also necessary for the engineer to have some knowledge of meteorology, climatology, physical geography, mineralogy and geology; furthermore, of general chemistry, metallurgy, and, in particular, of chemical technology. The study of botany, of the trees of commerce and of forestry, is also useful in many ways. In none of these studies, however, can the young engineer student expect to become complete master; even in mathematics, which is to the engineer the basis of all learning, he cannot expect to cover the whole field….

The course of study in sanitary engineering at the Massachusetts Institute of Technology in Boston is essentially one in civil engineering, with special attention devoted to sanitary chemistry and sanitary biology, and including some practice in the laboratories.” (Gerhard 1909)

References:

Gerhard, William P. (1909). Sanitation and Sanitary Engineering. New York:Gerhard (self published), 8 & 10.

Hutton, Frederick R. 1907. “The Mechanical Engineer and the Function of the Engineering Society.” Proceedings of the American Society of Mechanical Engineers. 29:6, 597-632.

Advertisements

November 16, 1918: Sanitary Survey of Unnamed City

Privy in terrible condition

November 16, 1918Municipal Journal. A Sanitary Survey of an Unnamed City. The conditions about which you will read were by no means unusual in 1918 in the U.S. “A State Board of Health a few months ago, made a sanitary survey of a certain city (the name of which is unessential) which was of more than usual interest, because of its thoroughness and the sensible recommendations based upon it….

The city in question has a population of about 30,000, of which negroes form a small percentage for a southern city. Although the city is not large, topographical conditions are such as to confine its growth in area, with the result that it presents many of the characteristics of a large, crowded city…. In 1916 fifteen cases of death from typhoid fever were reported, and it is believed that the number was even somewhat greater than this….A comparison of the distribution of the typhoid cases with the wells and privies indicates that the latter have played an important role in the spread of the disease, the typhoid areas largely coinciding with the unsewered districts, without city water. It should be noted further that these “typhoid areas” are located on steep hillsides where the drainage from privy to well is rapid and direct….

The water supply of the city is derived from the river that flows through it, the intake being located at a point near the upper boundary of the city. This river has a water-shed of 1,550 square miles of mountainous and rather thinly populated territory….Examinations of the river for miles upstream have shown its waters to be heavily polluted before they enter the city. While none of the municipal sewers empty into the river above the waterworks intake [thank goodness], there are two small runs draining an extensive unsewered area which is thickly populated….Thus it is seen that the source of supply isalways polluted to a greater or less degree, becoming at times a source of most extreme danger.Only the most thorough filtration and after-treatment can render a water of this character uniformly safe for drinking purposes. Unfortunately the skilled attention that is absolutely essential for the successful operation of a filter plant has not been had until recently.

Purification is secured by coagulation and sedimentation, followed by filtration through so-called mechanical or rapid gravity filters and final treatment with chlorine gas….Just before entering the sedimentation basins, the water receives its dose of coagulant consisting of lime and sulphate of alumina in amounts depending upon the character of the river water as shown by its alkalinity and turbidity….

The man who installed the original hypochlorite plant for final treatment of the water painted its virtues so very bright that he assured the water company that when the river was clear they need not use any chemicals except hypochlorite of lime.It is felt that this ill-advised suggestion may have been in part responsible for the epidemic of typhoid fever the city has just experienced.

The sedimentation basins are two in number, each having a capacity of about 238,000 gallons. At the normal rate of filtration this provides for but one and three-fourths hours storage, a period that is considered far too short to be comparable with adequate coagulation and sedimentation. The control of the chemicals constitutes another objection. The solutions are prepared in large tanks from which they are fed through hand-operated orifices and the rate of dosing is recorded as inches in depth of the tank per hour. Constant-feed, calibrated orifice boxes should be supplied, that the dosing may be more accurately controlled. [see design of such a feed system by George Warren Fuller at the Little Falls treatment plant, Fuller 1903]

From the sedimentation basins the water flows by gravity to the filters, of which there are ten units, each having a superficial area of 230 square feet. At a normal rate of two gallons per square foot a minute, or 125 million gallons per acre per twenty-four hours, the ten units have a combined capacity of about 6.5 million gallons a day. As originally constructed, each unit was provided with a loss-of-head gage, rate controller, and individual sampling pump, all of which equipment has now been dismantled. A loss-of-head gage is essential if accurate knowledge of what each unit is doing and of the proper time to wash is to be had. As it now is, the filter man guessesat the proper time to wash the dirt out of the filter by the position of the inlet float; the dirtier the sand, the higher the level of water on the bed and the more quiet the float—a rather round-about method.

After washing, the filters are allowed to waste for a short time and then turned into the clear well. The lack of any rate controllers on the filters makes it certain that the most recently washed units will be filtering far in excess of the rate for which they were designed. Rate controllers would prevent the units from delivering more than a definite maximum at any time. With as small a clear-well as the one here provided (approximately 37,000 gallons), the lack of this important device becomes even more dangerous in that the pull of the high-service pumps is thrown almost directly upon the filters….

Washing of the filters is effected by forcing water and air through them from below. The water for washing is taken directly from the clear well by an electrically driven centrifugal pump. As has been previously noted, washing cannot be conducted on anything like a scientific basis owing to the lack of loss-of-head gages. The filters are, however, washed at least once a day, and more often if deemed necessary.

From the clear-water well, which is located beneath the filters, the water flows to the high-service pumps, receiving on the way a final treatment with chlorine. Chlorine gas is an excellent sterilizing agent in water, and small doses can effect a remarkable reduction in the number of bacteria present. The chlorine gas is introduced by a direct-feed manual-control chlorinator. In this plant the fact that the dose is not automatically controlled is extremely unfortunate, and if the plant were not in the hands of a skilled filter operator would be a very serious objection….

With a safe and potable water available [forsooth!], there is no excuse for the continuation in use of the 189 private wells in the city. While no analyses have been made to learn the extent to which the wells are polluted, there can be little doubt from their location and construction that many of them are dangerously contaminated.” (emphasis added)

Commentary:  The hard, cold, and alarming facts related in this 1918 sanitary survey of an anonymous southern U.S. city make it quite evident why its identity was not revealed. The typhoid death rate of 50 per 100,000 people in 1916 is shockingly high for a city that is served by a water supply that was both filtered and chlorinated. Obviously, something is terribly wrong with the operation of the treatment plant and the condition of private wells. The person conducting the sanitary survey expressed some optimism about current personnel and operations, but a sanitary survey conducted a year after would be needed to see if that optimism was justified.

The problems related in this sanitary survey should make us all glad that we live in the 21stcentury where we are blessed (at least in developed countries) with safe drinking water supplies.

Reference: “A Sanitary Survey of a City.” 1918. Municipal Journal. 45:19 November 9, 1918, 359-61, 383-6.

April 2, 1914: Sanitary Survey of Potomac and Miniature Plants by Malcolm Pirnie

Potomac River Watershed

April 2, 1914:  Municipal Journal articles. Make Survey of Potomac River. “Washington, D. C.-Public health service officials who are aboard the yacht Bratton making a sanitary survey of the Potomac river and Chesapeake bay have, according to report, taken between 1,500 and 2,000 samples of Potomac water for examination and analysis, and it is stated that it will be several weeks before the results of the survey are completed and ready for publication. In connection with the work being done by the Bratton on the navigable portions of the Potomac H. P. Letton of the public health service is at Hagerstown, Md., and is conducting the work of examining the headwaters of the Potomac to ascertain their sanitary condition and the effect the sewage and wastes from the large tanneries and other industries on the upper river are having on the water coming down past this city. It is stated that one of the objects the service has in making this survey is, if possible, to find some use for the various kinds of refuse from the manufacturing plants and to show how they can be turned into a source of profit instead of being allowed to pollute the Potomac water.”

Demonstrate Filtration Methods By Miniature Plants. “Salem, Mass.-Both the [slow] sand and mechanical methods of filtering water were interestingly demonstrated by Engineer H. M. Pirnie. Two plants in miniature had been constructed which gave Mr. Pirnie an excellent opportunity of showing state and city officials of Salem and Beverly just how each process operates and its relative advantages. The two cities mentioned are soon to use water from the Ipswich River, and the question of efficient filtration has received serious attention.”

Reference:  Municipal Journal. 1914. 36:14(April 2, 1914): 476-7.

Commentary:  By miniature plants, the author was undoubtedly referring to pilot plant studies of the two filtration technologies. H. M. Pirnie was Malcolm Pirnie who worked for the consulting firm of Hazen and Whipple and ultimately founded the firm known as Malcolm Pirnie, Inc.

December 3, 1842: Birth of Ellen Swallow Richards; 1907: Definition of Sanitary Engineer

Ellen Swallow RichardsDecember 3, 1842Ellen Swallow Richards was born. “Ellen Swallow Richards is perhaps best known as MIT’s first female graduate and instructor, but launching coeducation at the Institute is merely the first in a long list of her pioneering feats. The breadth and depth of her career are astounding; a 1910 tribute in La Follette’s Weekly Magazine professed that ‘when one attempts to tell of the enterprises, apart from her formal teaching, of which Mrs. Richards has been a part or the whole, he is lost in a bewildering maze.’ Authors and scholars have called her the founder of ecology, the first female environmental engineer, and the founder of home economics. Richards opened the first laboratory for women, created the world’s first water purity tables, developed the world standard for evaporation tests on volatile oils, conducted the first consumer-product tests, and discovered a new method to determine the amount of nickel in ore. And that’s just the short list of her accomplishments. In a nod to Richards’s remarkable knowledge and interests, her sister-in-law called her ‘Ellencyclopedia….’

Ellen Swallow Richards

MIT Laboratory with Normal Chlorine Map for Massachusetts on the Wall

Richards’s research on water quality was even more far-reaching. In 1887 [William R.] Nichols’s successor [Thomas M. Drown] put her in charge of implementing an extensive sanitary survey of Massachusetts inland waters, again for the board of health. The two-year study was unprecedented in scope. Richards supervised the collection and analysis of 40,000 water samples from all over the state–representing the water supply for 83 percent of the population. She personally conducted at least part of the analysis on each sample; the entire study involved more than 100,000 analyses. In the process, she developed new laboratory equipment and techniques, meticulously documenting her findings. Instead of merely recording the analysis data, she marked each day’s results on a state map–and noticed a pattern. By plotting the amount of chlorine in the samples geographically, she produced the famous Normal Chlorine Map, an indicator of the extent of man-made pollution in the state. The survey produced her pioneering water purity tables and led to the first water quality standards in the United States. Her biographer, Caroline Hunt, contends that the study was Richards’s greatest contribution to public health.”

Commentary:  There is a rich body of information about the life Ellen Swallow Richards. A video on YouTube with ESR expert Joyce B. Miles narrating is particularly interesting. Below is the Normal Chlorine Map from a book by Ellen Swallow Richards. It shows that chloride concentrations in ground and surface waters increase as one nears the coastline of the Atlantic Ocean. Any significant deviations from the “normal” levels of chloride in a water source indicated sewage contamination.

References:  Durant, Elizabeth. (2007). “Ellencyclopedia.” MIT Technology Review. August 15, 2007.

December 3, 1907: Address of President of the American Society of Mechanical Engineers. During his address on the function of engineering society, he gave a succinct definition of the sanitary engineer. “The sanitary engineer is a specialist in hydraulic engineering in the applications of water supply and drainage as means to secure the well being of the community as respects its public health. His field expands from that of the wise precautions respecting the piping of the individual house, where he touches the craftsmanship of the plumber, up to the broadest problems of sewage disposal and utilization, and the healthful supply of potable water for cities, free from bacterial or inorganic pollution at its source or in transit. His co-workers are the bacteriologist and the physician. It would seem more serviceable however for the purpose in hand to group such men with what are hereafter to be called the civil engineers.” (Hutton 1907)

sanitary engineering

Mahoning Co. Ohio Sanitary Engineering

In an article published two years later, a suggested list of courses for the well-trained sanitary engineer was recommended. “In order to be able to make use of the forces of nature for the promotion of the comfort, health and welfare of mankind, it is necessary to study and to become conversant with them; hence, training in the natural sciences and in mathematics forms the basis of sanitary as well as of all other branches of engineering. The study should include mathematics (arithmetic, algebra, geometry, trigonometry and stereometry), astronomy and descriptive geometry; likewise, the physical sciences, mechanics and dynamics, hydrostatics and hydraulics, aerostatics and aerodynamics; the theory of heat, optics, acoustics, magnetism and electricity. It is also necessary for the engineer to have some knowledge of meteorology, climatology, physical geography, mineralogy and geology; furthermore, of general chemistry, metallurgy, and, in particular, of chemical technology. The study of botany, of the trees of commerce and of forestry, is also useful in many ways. In none of these studies, however, can the young engineer student expect to become complete master; even in mathematics, which is to the engineer the basis of all learning, he cannot expect to cover the whole field….

The course of study in sanitary engineering at the Massachusetts Institute of Technology in Boston is essentially one in civil engineering, with special attention devoted to sanitary chemistry and sanitary biology, and including some practice in the laboratories.” (Gerhard 1909)

References:

Gerhard, William P. (1909). Sanitation and Sanitary Engineering. New York:Gerhard (self published), 8 & 10.

Hutton, Frederick R. 1907. “The Mechanical Engineer and the Function of the Engineering Society.” Proceedings of the American Society of Mechanical Engineers. 29:6, 597-632.

November 16, 1918: Sanitary Survey of Unnamed City

Privy in terrible condition

November 16, 1918Municipal Journal. A Sanitary Survey of an Unnamed City. The conditions about which you will read were by no means unusual in 1918 in the U.S. “A State Board of Health a few months ago, made a sanitary survey of a certain city (the name of which is unessential) which was of more than usual interest, because of its thoroughness and the sensible recommendations based upon it….

The city in question has a population of about 30,000, of which negroes form a small percentage for a southern city. Although the city is not large, topographical conditions are such as to confine its growth in area, with the result that it presents many of the characteristics of a large, crowded city…. In 1916 fifteen cases of death from typhoid fever were reported, and it is believed that the number was even somewhat greater than this…. A comparison of the distribution of the typhoid cases with the wells and privies indicates that the latter have played an important role in the spread of the disease, the typhoid areas largely coinciding with the unsewered districts, without city water. It should be noted further that these “typhoid areas” are located on steep hillsides where the drainage from privy to well is rapid and direct….

The water supply of the city is derived from the river that flows through it, the intake being located at a point near the upper boundary of the city. This river has a water-shed of 1,550 square miles of mountainous and rather thinly populated territory….Examinations of the river for miles upstream have shown its waters to be heavily polluted before they enter the city. While none of the municipal sewers empty into the river above the waterworks intake [thank goodness], there are two small runs draining an extensive unsewered area which is thickly populated….Thus it is seen that the source of supply is always polluted to a greater or less degree, becoming at times a source of most extreme danger. Only the most thorough filtration and after-treatment can render a water of this character uniformly safe for drinking purposes. Unfortunately the skilled attention that is absolutely essential for the successful operation of a filter plant has not been had until recently.

Purification is secured by coagulation and sedimentation, followed by filtration through so-called mechanical or rapid gravity filters and final treatment with chlorine gas….Just before entering the sedimentation basins, the water receives its dose of coagulant consisting of lime and sulphate of alumina in amounts depending upon the character of the river water as shown by its alkalinity and turbidity….

The man who installed the original hypochlorite plant for final treatment of the water painted its virtues so very bright that he assured the water company that when the river was clear they need not use any chemicals except hypochlorite of lime. It is felt that this ill-advised suggestion may have been in part responsible for the epidemic of typhoid fever the city has just experienced.

The sedimentation basins are two in number, each having a capacity of about 238,000 gallons. At the normal rate of filtration this provides for but one and three-fourths hours storage, a period that is considered far too short to be comparable with adequate coagulation and sedimentation. The control of the chemicals constitutes another objection. The solutions are prepared in large tanks from which they are fed through hand-operated orifices and the rate of dosing is recorded as inches in depth of the tank per hour. Constant-feed, calibrated orifice boxes should be supplied, that the dosing may be more accurately controlled. [see design of such a feed system by George Warren Fuller at the Little Falls treatment plant, Fuller 1903]

From the sedimentation basins the water flows by gravity to the filters, of which there are ten units, each having a superficial area of 230 square feet. At a normal rate of two gallons per square foot a minute, or 125 million gallons per acre per twenty-four hours, the ten units have a combined capacity of about 6.5 million gallons a day. As originally constructed, each unit was provided with a loss-of-head gage, rate controller, and individual sampling pump, all of which equipment has now been dismantled. A loss-of-head gage is essential if accurate knowledge of what each unit is doing and of the proper time to wash is to be had. As it now is, the filter man guesses at the proper time to wash the dirt out of the filter by the position of the inlet float; the dirtier the sand, the higher the level of water on the bed and the more quiet the float—a rather round-about method.

After washing, the filters are allowed to waste for a short time and then turned into the clear well. The lack of any rate controllers on the filters makes it certain that the most recently washed units will be filtering far in excess of the rate for which they were designed. Rate controllers would prevent the units from delivering more than a definite maximum at any time. With as small a clear-well as the one here provided (approximately 37,000 gallons), the lack of this important device becomes even more dangerous in that the pull of the high-service pumps is thrown almost directly upon the filters….

Washing of the filters is effected by forcing water and air through them from below. The water for washing is taken directly from the clear well by an electrically driven centrifugal pump. As has been previously noted, washing cannot be conducted on anything like a scientific basis owing to the lack of loss-of-head gages. The filters are, however, washed at least once a day, and more often if deemed necessary.

From the clear-water well, which is located beneath the filters, the water flows to the high-service pumps, receiving on the way a final treatment with chlorine. Chlorine gas is an excellent sterilizing agent in water, and small doses can effect a remarkable reduction in the number of bacteria present. The chlorine gas is introduced by a direct-feed manual-control chlorinator. In this plant the fact that the dose is not automatically controlled is extremely unfortunate, and if the plant were not in the hands of a skilled filter operator would be a very serious objection….

With a safe and potable water available [forsooth!], there is no excuse for the continuation in use of the 189 private wells in the city. While no analyses have been made to learn the extent to which the wells are polluted, there can be little doubt from their location and construction that many of them are dangerously contaminated.” (emphasis added)

Commentary:  The hard, cold, and alarming facts related in this 1918 sanitary survey of an anonymous southern U.S. city make it quite evident why its identity was not revealed. The typhoid death rate of 50 per 100,000 people in 1916 is shockingly high for a city that is served by a water supply that was both filtered and chlorinated. Obviously, something is terribly wrong with the operation of the treatment plant and the condition of private wells. The person conducting the sanitary survey expressed some optimism about current personnel and operations, but a sanitary survey conducted a year after would be needed to see if that optimism was justified.

The problems related in this sanitary survey should make us all glad that we live in the 21st century where we are blessed (at least in developed countries) with safe drinking water supplies.

Reference:  “A Sanitary Survey of a City.” 1918. Municipal Journal. 45:19 November 9, 1918, 359-61, 383-6.

April 2, 1914: Sanitary Survey of Potomac and Miniature Plants by Malcolm Pirnie

Potomac River Watershed

April 2, 1914: Municipal Journal articles. Make Survey of Potomac River. “Washington, D. C.-Public health service officials who are aboard the yacht Bratton making a sanitary survey of the Potomac river and Chesapeake bay have, according to report, taken between 1,500 and 2,000 samples of Potomac water for examination and analysis, and it is stated that it will be several weeks before the results of the survey are completed and ready for publication. In connection with the work being done by the Bratton on the navigable portions of the Potomac H. P. Letton of the public health service is at Hagerstown, Md., and is conducting the work of examining the headwaters of the Potomac to ascertain their sanitary condition and the effect the sewage and wastes from the large tanneries and other industries on the upper river are having on the water coming down past this city. It is stated that one of the objects the service has in making this survey is, if possible, to find some use for the various kinds of refuse from the manufacturing plants and to show how they can be turned into a source of profit instead of being allowed to pollute the Potomac water.”

Demonstrate Filtration Methods By Miniature Plants. “Salem, Mass.-Both the [slow] sand and mechanical methods of filtering water were interestingly demonstrated by Engineer H. M. Pirnie. Two plants in miniature had been constructed which gave Mr. Pirnie an excellent opportunity of showing state and city officials of Salem and Beverly just how each process operates and its relative advantages. The two cities mentioned are soon to use water from the Ipswich River, and the question of efficient filtration has received serious attention.”

Reference: Municipal Journal. 1914. 36:14(April 2, 1914): 476-7.

Commentary: By miniature plants, the author was undoubtedly referring to pilot plant studies of the two filtration technologies. H. M. Pirnie was Malcolm Pirnie who worked for the consulting firm of Hazen and Whipple and ultimately founded the firm known as Malcolm Pirnie, Inc.

December 3, 1842: Birth of Ellen Swallow Richards; 1907: Definition of Sanitary Engineer

Ellen Swallow RichardsDecember 3, 1842: Ellen Swallow Richards was born. “Ellen Swallow Richards is perhaps best known as MIT’s first female graduate and instructor, but launching coeducation at the Institute is merely the first in a long list of her pioneering feats. The breadth and depth of her career are astounding; a 1910 tribute in La Follette’s Weekly Magazine professed that ‘when one attempts to tell of the enterprises, apart from her formal teaching, of which Mrs. Richards has been a part or the whole, he is lost in a bewildering maze.’ Authors and scholars have called her the founder of ecology, the first female environmental engineer, and the founder of home economics. Richards opened the first laboratory for women, created the world’s first water purity tables, developed the world standard for evaporation tests on volatile oils, conducted the first consumer-product tests, and discovered a new method to determine the amount of nickel in ore. And that’s just the short list of her accomplishments. In a nod to Richards’s remarkable knowledge and interests, her sister-in-law called her ‘Ellencyclopedia….’

Ellen Swallow Richards

MIT Laboratory with Normal Chlorine Map for Massachusetts on the Wall

Richards’s research on water quality was even more far-reaching. In 1887 [William R.] Nichols’s successor [Thomas M. Drown] put her in charge of implementing an extensive sanitary survey of Massachusetts inland waters, again for the board of health. The two-year study was unprecedented in scope. Richards supervised the collection and analysis of 40,000 water samples from all over the state–representing the water supply for 83 percent of the population. She personally conducted at least part of the analysis on each sample; the entire study involved more than 100,000 analyses. In the process, she developed new laboratory equipment and techniques, meticulously documenting her findings. Instead of merely recording the analysis data, she marked each day’s results on a state map–and noticed a pattern. By plotting the amount of chlorine in the samples geographically, she produced the famous Normal Chlorine Map, an indicator of the extent of man-made pollution in the state. The survey produced her pioneering water purity tables and led to the first water quality standards in the United States. Her biographer, Caroline Hunt, contends that the study was Richards’s greatest contribution to public health.”

Commentary: There is a rich body of information about the life Ellen Swallow Richards. A video on YouTube with ESR expert Joyce B. Miles narrating is particularly interesting. Below is the Normal Chlorine Map from a book by Ellen Swallow Richards. It shows that chloride concentrations in ground and surface waters increase as one nears the coastline of the Atlantic Ocean. Any significant deviations from the “normal” levels of chloride in a water source indicated sewage contamination.

1203-normal-chlorine-map-thomas-m-drown-ellen-swallow-richardsReferences: Durant, Elizabeth. (2007). “Ellencyclopedia.” MIT Technology Review. August 15, 2007.

sanitary engineering

Mahoning Co. Ohio Sanitary Engineering

December 3, 1907: Address of President of the American Society of Mechanical Engineers. During his address on the function of engineering society, he gave a succinct definition of the sanitary engineer. “The sanitary engineer is a specialist in hydraulic engineering in the applications of water supply and drainage as means to secure the well being of the community as respects its public health. His field expands from that of the wise precautions respecting the piping of the individual house, where he touches the craftsmanship of the plumber, up to the broadest problems of sewage disposal and utilization, and the healthful supply of potable water for cities, free from bacterial or inorganic pollution at its source or in transit. His co-workers are the bacteriologist and the physician. It would seem more serviceable however for the purpose in hand to group such men with what are hereafter to be called the civil engineers.” (Hutton 1907)

In an article published two years later, a suggested list of courses for the well-trained sanitary engineer was recommended. “In order to be able to make use of the forces of nature for the promotion of the comfort, health and welfare of mankind, it is necessary to study and to become conversant with them; hence, training in the natural sciences and in mathematics forms the basis of sanitary as well as of all other branches of engineering. The study should include mathematics (arithmetic, algebra, geometry, trigonometry and stereometry), astronomy and descriptive geometry; likewise, the physical sciences, mechanics and dynamics, hydrostatics and hydraulics, aerostatics and aerodynamics; the theory of heat, optics, acoustics, magnetism and electricity. It is also necessary for the engineer to have some knowledge of meteorology, climatology, physical geography, mineralogy and geology; furthermore, of general chemistry, metallurgy, and, in particular, of chemical technology. The study of botany, of the trees of commerce and of forestry, is also useful in many ways. In none of these studies, however, can the young engineer student expect to become complete master; even in mathematics, which is to the engineer the basis of all learning, he cannot expect to cover the whole field….

The course of study in sanitary engineering at the Massachusetts Institute of Technology in Boston is essentially one in civil engineering, with special attention devoted to sanitary chemistry and sanitary biology, and including some practice in the laboratories.” (Gerhard 1909)

References:

Gerhard, William P. (1909). Sanitation and Sanitary Engineering. New York:Gerhard (self published), 8 & 10.

Hutton, Frederick R. 1907. “The Mechanical Engineer and the Function of the Engineering Society.” Proceedings of the American Society of Mechanical Engineers. 29:6, 597-632.