Tag Archives: The Chlorine Revolution

January 2, 1900: Chicago Sanitary and Ship Canal Opening

Breaking the dam and turning water into the Canal on January 2, 1900

January 2, 1900:  On January 2, 1900, the City of Chicago opened up an earthen dam that isolated the Chicago Drainage Canal and forced the Chicago River to reverse its course and discharge into the Mississippi River 43 miles above the intake for the water supply of St. Louis, Missouri.(Hill 2000) The total travel distance for the sewage from its generation to St. Louis intake was about 357 miles.  Missouri sued Illinois to plug the connection to the Mississippi River, also called the Sanitary and Ship Canal, which they claimed was contaminating the St. Louis water supply and increasing the incidence of typhoid fever in that community.

The U.S. Supreme Court asserted primary jurisdiction in the case.  Testimony of witnesses was held before Frank S. Bright who was Commissioner of the US Supreme Court.  In the first sentence of a report on the trial, the author of the report, which summarized the testimony in the case gave his opinion on the importance and the content of the trial.

“The testimony taken in the suit of the, State of Missouri against the State of Illinois and the sanitary district of Chicago comprises the best symposium on river pollution, its biological and chemical aspects, and its general and special sanitary significance that has ever been assembled.”(Leighton 1907)

Digging the Chicago Drainage Canal

The case was more well-known than the lawsuit associated with the first use of chlorine to disinfect a U.S. water supply—Jersey City, New Jersey. The outcome of the Chicago case rested on the testimony of renowned water quality experts on both sides.  Of particular interest, some of the same expert witnesses in the Chicago Drainage case testified in the Jersey City trials.  The sanitary experts in common were, for the plaintiff:  George C. Whipple, Allen Hazen, William T. Sedgwick and George W. Fuller.  For the defendant, the experts in common were:  Rudolph Hering (business partner with George W. Fuller, but on the opposite side of the case), William P. Mason and Leonard P. Kinnicutt.(Leighton 1907) It was not uncommon for the leading sanitary engineers, chemists and bacteriologists to find themselves on one side of a lawsuit or another from their brethren and then the next trial would result in a new mix of experts and their clients.

The final verdict in the trial came from the U.S. Supreme Court. The Justices read the transcript and briefs submitted to it and rendered an opinion written by Justice Oliver Wendell Holmes.  Based on his opinion, it was clear that the Justices relied on the clarity, truthfulness and logic of the experts on both sides and the chemical and bacteriological data presented during trial.  Differences of opinion between the experts were evaluated and resolved by the Court.  In one example, Justice Holmes noted that while St. Louis was blaming sewage from Chicago for increasing the typhoid fever death rate in their city, experts for the defendants showed convincingly that there was no evidence that contamination from Chicago was causing the problem and that sewage discharges from other cities above the intake in Missouri and Illinois including St. Louis were more likely responsible for the degraded quality of their water supply.  The Court found on all points for the defendants and the Court obviously believed that the weight of expert opinion testimony favored the defendants’ position.(Leighton 1907)

What the trial did not do was establish a precedent or make a ruling that revolutionized the conduct of cities with regard to sewage discharges and water supply.  Unlike the impact of the Jersey City case, which is presented in full in the book, The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives, the result of the Chicago Drainage Canal case was that contamination of a water supply by an upstream sewage discharge had to be proven with real data and not based on the speculation and unproven opinions of expert witnesses.  Contamination had to be proven as actually coming from the upstream party being sued.  As Justice Holmes stated in his opinion:  “The plaintiff obviously must be cautious upon this point, for if this suit should succeed many others would follow, and it not improbably would find itself a defendant to a bill by one or more of the States lower down upon the Mississippi.”(Leighton 1907) In effect, St. Louis and the state of Missouri reached too far (about 357 miles) and the U.S. Supreme Court did not agree with their claims.

Dredging the river for the Sanitary and Ship Canal

In the history of sanitary engineering in the U.S., the Chicago Drainage Canal case has been far better known than the Jersey City case.  The only logical reason is that an excellent summary of the Chicago case was published in a U.S. Geological Survey report that was widely available.  The Jersey City trial transcripts were contained in a limited printing of 12 volumes covering over 6,800 pages that no one had summarized and very few people had ever read.

The well-known attorney, Alan M. Dershowitz, published a book in 2004 summarizing the major trials in the U.S. over the past 300 years that “transformed our nation.”  The trials that he summarized extended all the way back to the 17th century and the Salem Witch Trials.  Important trials that are covered in the book included the Boston Massacre Trials, the Trial of Aaron Burr, the Dred Scott Case, the Scopes “Monkey” Trial, the trial of the Chicago Seven, the O.J. Simpson Trial, the Clinton Impeachment Trial, and Bush v. Gore.  Neither the Chicago Drainage Canal case nor the two Jersey City trials were mentioned in Dershowitz’s book despite their importance to water quality improvements and major advances in public health.(Dershowitz 2004)

References:

Dershowitz, Alan M. America on Trial:  Inside the Legal Battles that Transformed our Nation. New York:Warner Books, 2004.

Hill, Libby. The Chicago River:  A Natural and Unnatural History. Chicago:Lake Claremont Press, 2000.

Leighton, Marshall O. “Pollution of Illinois and Mississippi Rivers by Chicago Sewage:  A Digest of the Testimony Taken in the Case of the State of Missouri v. the State of Illinois and the Sanitary District of Chicago.” U.S. Geological Survey, Water Supply and Irrigation Paper No. 194, Series L, Quality of Water, 20, Department of the Interior, Washington, DC:U.S. Government Printing Office, 1907.

Advertisements

December 22, 1877: Nascent Oxygen; 1998: Pollution Runs Through It

Oxidation Reduction Reactions

December 22, 1877: Publication date for “The Nascent State as Affecting Chemical Action.” (Davies 1877) Before we understood that oxidation-reduction reactions involved electron transfers, chemists theorized that oxygen existed in a “nascent state.” This state made it possible for oxidation reactions to take place. Such an outmoded chemistry concept is relevant to a discussion of the history of chlorination in the U.S.

The first continuous use of chlorine to disinfect a U.S. water supply occurred at Boonton Reservoir—the water supply for Jersey City, New Jersey. As recounted in a forthcoming book (The Chlorine Revolution), two trials defined the need for disinfection and documented how it happened. In the second Jersey City trial, Dr. John L. Leal claimed that chlorine was not responsible for killing bacteria. Instead, he put forth the long-standing theory that chlorine when added to water liberated something called nascent oxygen, and it was the nascent oxygen was responsible for disinfection. (McGuire 2013)

The concept of nascent oxygen originated with James Watt, who described the importance of liberated oxygen in the bleaching process. An equation suggested by Watt (Race 1918) showed chlorine producing oxygen when it was dissolved in water:

Cl2 + H2O = 2HCl + O

In which Cl2 = chlorine, H2O = water, HCl = hydrochloric acid, and O = nascent oxygen.

In a later, well-known publication, Albert D. Hooker stated the theory most clearly: “It should be well understood that chloride of lime, in its industrial application of bleaching, deodorizing, or disinfecting, does not act by its chlorine, but by its oxygen.” (Emphasis in original.) (Hooker 1913)

In 1918, Joseph Race described the controversy surrounding chlorine’s mode of action in water. Race stated that Fischer and Proskauer (1884) believed that chlorine was not directly toxic. Warouzoff, Winograoff, and Kolessnikoff (1886) found that chlorine gas killed airborne tetanus spores. Interestingly, Race quoted at length John L. Leal’s second-trial testimony supporting the theory of disinfection by nascent or potential oxygen. However, Race’s laboratory work in 1915–17 appeared to convince him that disinfection was caused by the direct toxic action of chlorine and not by nascent oxygen. (Race 1918)

Other publications reflected the confusion over chlorine’s mechanism of action. In his 1917 textbook, Ellms (who would testify in the second Jersey City trial) presented equations showing the formation of hypochlorous acid (HOCl) when chlorine was added to water. At this point in his discussion, he was correct. However, he then stated “The HOCL is decomposed into HCl and oxygen, which latter acts upon any oxidizable matter that may be present.” (Ellms 1917)

2HOCL à 2HCl + O2

In this case, HOCl = hypochlorous acid and O= oxygen.

“The energy liberated by the decomposition of the hypochlorous acid, as previously stated, explains the powerful oxidizing action of the evolved oxygen, and the destructive effect upon the microorganisms. Chlorine or the hypochlorites are therefore, merely agents for the production of oxygen under conditions which render it extremely active.” (Ellms 1917)

Abel Wolman and I.H. Enslow tried to put a stop to the nascent oxygen theory in 1919, but it persisted long after that. (Fair and Geyer 1954) We know now that HOCl exists in water in equilibrium with the dissociated hypochlorite ion and that the degree of dissociation is a function of the water’s pH.

HOCL ↔ OCl + H+

For this equation, OCl = hypochlorite ion and H+ = hydrogen ion.

In a textbook published in 1924, authors F.E. Turneaure and H.L. Russell tried to straddle the issue:

“The reaction of both hypochlorite and liquid chlorine in sterilization of water is substantially the same. The accepted theory is that the chlorine forms hypochlorous acid with the water setting free nascent oxygen which is considered the effective sterilization agent. Some authorities, however, contend that the chlorine itself has a toxic effect upon the bacteria.” (Turneaure and Russell 1924)

A 1935 rewrite of Sedgwick’s famous book on sanitary science favored the direct action of chlorine theory but did not totally discount the action by nascent oxygen.

“The mechanism by which chlorine brings about germicidal action is still undetermined. It is believed by some that the bacteria are destroyed because of the direct toxic effect of the chlorine. Others maintain that the introduction of chlorine into water results in the formation of hypochlorous acid—an unstable compound—which breaks up and liberates nascent oxygen and hydrochloric acid, the supposition being that the bacteria are destroyed by the nascent oxygen. . . . Since chlorine compounds can destroy bacteria even when oxygen is not liberated it would seem that those mechanisms that explain the germicidal action of chlorine without hypothesizing the formation of nascent oxygen have a more sound scientific basis.” (Prescott and Horwood 1935)

A 1944 publication by S.L. Chang appeared to put the controversy to rest: “The action of chlorine and chloramine compounds on cysts was attributed to the active chlorine which may oxidize or chlorinate the proteins in the protoplasm. The possibility of action by nascent oxygen liberated by HOCl was indirectly studied, and the evidence strongly indicated that this was unlikely to occur.” (Chang 1944) Since Chang’s publication, nascent oxygen has not been mentioned in professional publications except as a historical curiosity.

In their classic 1954 textbook on water and wastewater engineering, Gordon M. Fair and John C. Geyer addressed the historically curious concept and stated categorically that oxygen did not accomplish disinfection. It was chlorine in its various forms in water that was toxic to bacteria. (Fair and Geyer 1954) Like many a scientific theory that conveniently explained a troubling public relations problem, it took a lot of time to kill the nascent oxygen idea.

References:

  • Chang, S.L. 1944. “Destruction of Micro-Organisms.” Journal AWWA. 36:11 1192-1207.
  • Davies, Edward. 1878. “The Nascent State as Affecting Chemical Action.” The Pharmaceutical Journal and Transactions. 8: 485-6.
  • Ellms, Joseph W. 1917. Water Purification. New York City, N.Y.: McGraw-Hill.
  • Fair, Gordon M., and John C. Geyer. 1954. Water Supply and Waste-water Disposal. New York City, N.Y.: John Wiley & Sons, Inc.
  • Hooker, Albert D. 1913. Chloride of Lime in Sanitation. New York City, N.Y.: John Wiley & Sons.
  • McGuire, Michael J. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver:American Water Works Association, 2013.
  • Prescott, Samuel C. and Murray P. Horwood. 1935. Sedgwick’s Principles of Sanitary Science and the Public Health: Rewritten and Enlarged. New York:McMillan.
  • Race, Joseph. 1918. Chlorination of Water. New York City, N.Y.: John Wiley & Sons.
  • Turneaure, F.E., and H.L. Russell. 1924. Public Water-Supplies: Requirements, Resources, and the Construction of Works. 3rd Edition. New York City, N.Y.: John Wiley & Sons, Inc.

Polluted South Platte River

December 22, 1998New York Times headline—Observatory:  Pollution Runs Through It. “A river is like a highway, flowing through the landscape. Unfortunately, according to a new study, it is also like a car, polluting the air as it rolls along.

Scientists from the United States Geological Survey, in a study of the South Platte River in Nebraska and Colorado, determined that the river gives off large amounts of nitrous oxide, a gas that acts as a catalyst in the destruction of ozone in the atmosphere.

Like many rivers, the South Platte is rich in nitrates and ammonium, from agricultural runoff and the discharges from sewage treatment plants.

Microbes turn these nitrogen sources into nitrous oxide. The researchers, whose work was published in the Internet edition of Environmental Science and Technology, found that the river in many places was supersaturated in nitrous oxide, with the result that much of it entered the atmosphere.

The scientists estimated that the amount of the gas emitted along a 450-mile stretch of the river each year was equivalent to that produced by all the worst sewage treatment plants in the United States.

And although they said more studies were needed, they added that if the South Platte is typical, as seems likely, rivers are a major source of man-made nitrous oxide pollution.”

December 21, 1868: Birth of George Warren Fuller

George Warren Fuller, 1903, 35 years old

December 21, 1868:  Birth of George Warren Fuller in Franklin, Massachusetts. George Warren Fuller was, quite simply, the greatest sanitary engineer of his time, and his time was long—lasting from 1895 to 1934.  In truth, we have not seen his like since.  How did he reach the pinnacle of his field?  What early influences led him on his path? There is a biography of Fuller on Wikipedia that I wrote which summarizes his life from a “neutral point of view.” The material below is taken in part from Chapter 7 of The Chlorine Revolution:  Water Disinfection and the Fight To Save Lives. By design, it gives more of a personal flavor to his life.

George Warren Fuller was born in Franklin, Massachusetts on December 21, 1868—ten years after the death of Dr. John Snow and ten years after the birth of Dr. John L. Leal.  He was the son of George Newell Fuller and Harriet Martha Craig. There is not much known about his father who was simply described as a farmer.  His father was born on the Fuller family property in Franklin, Massachusetts on November 22, 1819.

Harriet Martha Craig was born on February 2, 1841, grew up near Leicester, Massachusetts, and attended Mount Holyoke College, but she did not graduate.  Her final year at the institution was 1865.  They were married on November 15, 1866 when he was 46 and she was only 25.  They settled down in the Franklin-Medway area of rural Massachusetts for a quiet life of farming on the ancestral Fuller family property.  They had two children, George W. and Mabel B. who was born in 1876.  We know that George kept in touch with his younger sister in later years.  She married Carl W. DeVoe and moved to Jerome, Idaho. George owned a ranch in Idaho and must have visited her there.

Place names in Massachusetts have changed over the past several hundred years as the land area covering certain towns changed due to the expansion and contraction of town boundaries or as a result of new towns being carved off from old ones.  Towns that figured prominently in Fuller’s history, Dedham, Franklin and West Medway, all describe the same general area, which is about 10-25 miles southwest of Boston.

We know only a little about his early education.  One report observed:

“George Warren Fuller was at the head of his class when he attended the Dedham schools. His scholarship was, of course, a source of great satisfaction to his mother. At sixteen he passed the examination for entrance at MIT but, his father having died a few weeks before, it was thought best for him to have a fourth year in high school….”

After his father’s death on May 3, 1885, his mother moved 2,500 miles away to Claremont, California where she lived until she died in 1915.  George must have felt that he had lost both parents at the same time.  We do not know if he was looking for a stable family life to replace the one he had lost, but we do know that he married when he was only two years out of high school, in 1888.  His first wife, Lucy Hunter was born in October 1869 and died far too young on March 18, 1895. Lucy came from a family who immigrated to America from New Brunswick and Prince Edward Island.  Her father was born about 1830 and listed his occupation as farmer.  Her mother, Sarah, was born about 1845.  The farming family had seven children, three boys and four girls.  They must have moved to Boston from New Brunswick sometime between 1877 and 1880.  The youngest boy, Harry, was born in New Brunswick about 1877. I recently heard from a descendant of Lucy Fuller who was researching her family. According to her second cousin, three times removed, the family was sailing from Northern Ireland to Philadelphia in 1767 when their ship was wrecked off of Nova Scotia. Lucy’s family eventually made it to Boston while many of the other Hunters moved on to Ontario, Canada.

In 1880, the U.S. census showed that her family lived in Boston at 218 Bennington Street, which is now near Boston Logan International Airport and was located near cultivated land in the late 1800s.  The address is about three miles from the MIT campus, as the crow flies.

Lucy was 18 years old and Fuller was 20 years old when they were married.  Fuller was only in his second year at university (1886-1890).  They had one son, Myron E. Fuller who was born in Boston on June 4, 1889. We do not know much about the marriage, but we do know that George W. Fuller was issued a passport on May 2, 1890 for his trip to Germany and his continued studies. There is no record that Lucy or Myron applied for a passport or accompanied Fuller to Germany.  Massachusetts death records listed her cause of death as “enteritis” which was a general term used for diseases caused by the ingestion of pathogens from food or water.  The death records listed her as “married” which meant that her marriage to Fuller was not dissolved prior to her death. There is no evidence that George W. Fuller lived with her and their son after 1889.

From a 1910 census report, it is clear that Myron lived with his father in Summit, New Jersey.  One recorded connection we know of between Myron and his father was mentioned in the preface of Fuller’s 1912 book, Sewage Disposal. Fuller acknowledged Myron (who was 22 years old at the time) for creating the index to the book.  One source showed that Fuller and McClintock employed Myron from 1911 to 1916 and again from 1919 until at least 1922. In 1918, Myron registered for the draft and listed his occupation as civil engineer. The same reference showed Myron working for the City of Philadelphia in the Bureau of Surveys—the same occupation as his great-great-great-great grandfather, Ensign Thomas Fuller.  He lived in Philadelphia with his wife and one child.

While Fuller was in Louisville working on the filtration investigations, he met Caroline L. Goodloe who came from a fine, old Louisville family.  In November 1899, Fuller married her in Louisville. They were both 31 years old when they were married.  In May of 1900, husband and wife went on a trip to Europe—a somewhat delayed honeymoon. Their son, Kemp Goodloe Fuller, was born on March 10, 1901. On November 11, 1903, while living in New York City, their second son, Asa W. Fuller was born.

We know from records published in the annual report of the APHA and other sources that Fuller had his offices in New York City at 220 Broadway for many years beginning in 1899, which was the same address given by Allen Hazen for his offices for a short period of time.

Tragically, Caroline Goodloe Fuller died in June 21, 1907, while George W. Fuller was most heavily engaged in numerous water and sewage disposal projects all over the U.S.  At her death, George W. Fuller was living at 309 West 84th Street in New York City with his wife and their sons.  She was 38 years old.

The 1910 Census form showed that Fuller was living at 160 Boulevard, Summit, New Jersey with Alice C. Goodlow (sic) who was identified as his sister-in-law, Mary L. Goodlow (sic) identified as his mother-in-law and his three sons Myron, Kemp G. and Asa.  George’s in-laws had come up from Louisville to help him raise the boys.  Also listed at the same residence was an interesting guest, Grace F. Thomson, 43, born in China of English ancestry and claiming a trade of metal working.  In addition, there were three servants (two Irish and one Greek) making it a full and busy household.  The census form showed him as widowed, so by 1910 he had not remarried.

We know from several accounts, that George Warren Fuller was, in many ways, a big man.  Physically, he was tall.  An account by a colleague said that he was over six feet tall, but passport application forms that Fuller filled out showed that his height was 5 feet 10 inches. Pictures of him from 1903 until at least 1928 showed that he was, to use a descriptor from the time, stout. One description had him at 285 pounds with a size 18 collar.

His hair was dark brown and, in the style of the day, slicked down and parted in the middle.  As time marched on, he began to gray at the temples and then the gray seemed to take over his thinning head of hair.  He was clean-shaven except for his days in Louisville during the filtration studies, when he sported a bushy mustache.  He had blue eyes that could bore into someone who did not please him and twinkle when he was trying to charm a lady.  The round spectacles that he always wore did not detract from the intensity of his blue eyes.

Commentary:  George Warren Fuller Comes to California…in 2012

On April 3 2012, I gave a talk at the California Nevada Section Conference of the American Water Works Association. I teamed up with John Marchand who gave a talk on Dr. John Snow of Broad Street Pump fame. We made a pact to give our talks in costume, which incredibly we both followed through on. Below are links to my talk broken up into three parts (YouTube restrictions). It describes Fuller’s life and the first use of chlorine on the Jersey City water supply in 1908.

Part 1:  http://youtu.be/37WZkp5148w

Part 2:  http://youtu.be/rsicrBvVMc4

Part 3:  http://youtu.be/n6PuOvjjQMI

December 9, 1785: Albert Stein Born; 1832: William J. Magie Dies

December 9, 1785: Birth of Albert Stein in Dusseldorf, Prussia.  In Richmond, Virginia, Albert Stein was responsible for building the first slow sand filter in the U.S. for municipal supply. “Albert Stein was born in Dusseldorf, Prussia, December 9, 1785. After being educated as a civil engineer, he began work on a topographical survey of the Rhenish Provinces. In 1807, he was appointed hydraulic engineer by Murat, then Grand Duke of Berg by the favor of Napoleon I, whose cavalry had been led by Murat. After the fall of Napoleon and the cession of the duchy to Prussia, Stein resigned his position and came to America. He reached Philadelphia in 1816, where he seems to have had some relation with Frederic Graff, Chief Engineer of the Philadelphia Water Works. In 1817, Stein submitted plans for a water works at Cincinnati. About that time, also, he made surveys for a canal from Cincinnati to Dayton. For a few years beginning in 1824 he was engineer for deepening the tidal section of the Appomattox River at and below Petersburg, Va. He was engineer for water works at Lynchburg, Va., in 1828-30. While building the Richmond [filtration] works, Stein designed for Nashville, Tenn., a water works which was completed in 1832. In the period 1834-40, Stein was at New Orleans, building a reservoir for the water works there, a canal from the city to Lake Pontchartrain, and making a survey and plan for the improvement of the Southwest Pass of the Mississippi. In 1840 he leased a small, privately owned water works system at Mobile, Ala., which he improved and operated. He died July 26, 1874, on his estate at Spring Hill near Mobile.”

Reference:  Baker, Moses N. 1981. The Quest for Pure Water: the History of Water Purification from the Earliest Records to the Twentieth Century. 2nd Edition. Vol. 1. Denver, Co.: American Water Works Association, 130.

Jersey City Chlorination Facility at Boonton Reservoir

December 9, 1832:  Birth of William J. Magie. William J. Magie was selected by Vice Chancellor Frederic W. Stevens to hear the second part of the Jersey City trials.  In 1899, Jersey City, New Jersey contracted for the construction of a new water supply on the Rockaway River. The water supply included a dam, reservoir and 23-mile pipeline and was completed on May 4, 1904. City officials were not pleased with the project as delivered by the private water company and filed a lawsuit in the Chancery Court of New Jersey. The second trial was devoted, in part, to a determination of whether chlorine could be used to make the water pure and wholesome before it was delivered to Jersey City.

One might assume that someone relatively junior might be appointed as the Special Master to hear the highly technical and excruciatingly long arguments from both sides of the case.  Not so.  William Jay Magie was one of the most revered judges of this time period.  He took the role of Special Master in 1908 after completing 8 years as Chancellor of the Court of Chancery.  Prior to that, he was a member of the New Jersey Senate (1876-1878), Associate Justice of the New Jersey Supreme Court (1880-1897) and Chief Justice of the same court from 1897 to 1900.

“As a trial judge his cases were handled with notable success, as he had ample experience in trying causes before juries and a just appreciation of the worth of human testimony…” Judge Magie needed all of his powers of appreciation of human testimony in the second trial, which boiled down to which of the expert witnesses could be believed when both sides marshaled some of the most eminent doctors and engineers in the land.

Judge Magie was born on December 9, 1832 in Elizabeth, New Jersey and lived his life in that town.  He graduated from Princeton College in 1852 and studied law under an attorney in Elizabeth.  He was admitted to the bar of New Jersey in 1856.  At the time of the second trial in 1908 he was 76 years old and near the end of his distinguished career.

Magie’s key ruling in the second trial was captured in the following quote:  “I do therefore find and report that this device is capable of rendering the water delivered to Jersey City, pure and wholesome, for the purposes for which it is intended, and is effective in removing from the water those dangerous germs which were deemed by the decree to possibly exist therein at certain times.”

References:

McGuire, Michael J. 2013. The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Magie, William J. 1910. In Chancery of New Jersey: Between the Mayor and Aldermen of Jersey City, Complainant, and the Jersey City Water Supply Co., Defendant. Report for Hon. W.J. Magie, special master on cost of sewers, etc., and on efficiency of sterilization plant at Boonton. (Case Number 27/475-Z-45-314): 1–15. Jersey City, N.J.: Press Chronicle Co.

November 27, 1924: Death of George C. Whipple

George C. Whipple

November 27, 1924:  Death of George C. Whipple.  “George Chandler Whipple (1866–1924) was a civil engineer and an expert in the field of sanitary microbiology. His career extended from 1889 to 1924 and he is best known as a cofounder of the Harvard School of Public Health. Whipple published some of the most important books in the early history of public health and applied microbiology. . . .In 1899, Jersey City, New Jersey contracted for the construction of a new water supply on the Rockaway River, which was 23 miles west of the City. The water supply included a dam, reservoir and 23-mile pipeline and was completed on May 4, 1904. As was common during this time period, no treatment of any kind was provided to the water supply. City officials were not pleased with the project as delivered by the private water company and filed a lawsuit in the Chancery Court of New Jersey. Among the many complaints by Jersey City officials was the contention that the water served to the City was not “pure and wholesome” as required by the contract. Whipple testified as an expert witness for the plaintiff in both trials.”

Commentary:  George C. Whipple was a very interesting person. I had the opportunity to go through a small part of the archive that he left to Harvard University while researching my book, The Chlorine Revolution:  Water Disinfection and the Fight to Save Lives. I swear that he saved every last piece of paper that he ever touched in his career. It is a fascinating look into the mind of a turn-of-the-century expert in drinking water treatment. Even though he was trained as a civil engineer, he made some of the most important early advances in microscopy and the ecology of lakes and rivers. He invented the Secchi disk that we use today. The original Secchi disk was all white. He created the disk with quadrants that were alternating black and white. Any civil engineer will recognize that arrangement as the same one found on a land surveying target marker. He was one of the first researchers to identify taste and odor problems in water as directly related to the presence of certain algae species. Check out the full biography that I wrote about him on Wikipedia.

November 21, 2006: PFOA in Drinking Water; 1899: Garret Hobart Dies

Perfluorooctanoic acid (PFOA)

November 21, 2006:  PFOA Contaminates Drinking Water. “On November 21, 2006, the USEPA ordered DuPont company to offer alternative drinking water or treatment for public or private water users living near DuPont’s Washington Works plant in West Virginia (and in Ohio), if the level of PFOA detected in drinking water is equal to or greater than 0.5 parts per billion. This measure sharply lowered the previous action level of 150 parts per billion that was established in March 2002.[133] Perfluorooctanoic acid (PFOA), also known as C8 and perfluorooctanoate, is a synthetic, stable perfluorinated carboxylic acid and fluorosurfactant. One industrial application is as a surfactant in the emulsion polymerization of fluoropolymers. It has been used in the manufacture of such prominent consumer goods as Teflon and Gore-Tex. PFOA has been manufactured since the 1940s in industrial quantities. It is also formed by the degradation of precursors such as some fluorotelomers.

PFOA persists indefinitely in the environment. It is a toxicant and carcinogen in animals. PFOA has been detected in the blood of more than 98% of the general US population in the low and sub-parts per billion range, and levels are higher in chemical plant employees and surrounding subpopulations. Exposure has been associated with increased cholesterol and uric acid levels, and recently higher serum levels of PFOA were found to be associated with increased risk of chronic kidney disease in the general United States population, consistent with earlier animal studies. “This association was independent of confounders such as age, sex, race/ethnicity, body mass index, diabetes, hypertension, and serum cholesterol level.”

Commentary and Update:  More sensitive analytical methods and widespread monitoring have found PFOA and related compounds in 27 states according to headlines in 2016. But remember, dear reader that this was being publicized by the Environmental Working Group or EWG and must be taken with a huge grain of salt. What does parts per trillion of any chemical really mean?

November 21, 1899Death of Garret A. Hobart. “Garret Augustus Hobart (June 3, 1844 – November 21, 1899) was the 24th Vice President of the United States (1897–1899), serving under President William McKinley…. As vice president, Hobart proved a popular figure in Washington and was a close adviser to McKinley.”

While much is known about Hobart’s role as vice president, his role in the formation of private water companies and his support of these companies through legislation is less well known. Hobart was elected to the New Jersey Assembly and Senate during the early part of his career. During the 1870s and 1880s there was a lot of legislative activity that appeared to be for the benefit of private water companies.

In 1881, one bill that was introduced by Garret A. Hobart, then a state senator, was designed to give private water companies the power to acquire and distribute water resources independent of municipal or state control.  While not explicitly stated, the bill purportedly had a single intention of giving one company, the Passaic Water Company, more power to access water supplies to prevent water shortages at the factories of Paterson which were forced to idle production in the summer season.

The bill was not successful, (New York Times, March 22, 1881) which was undoubtedly due in part to the widespread suspicion that the bill would grant powers to companies to export New Jersey water supplies to New York.  “[New York speculators] have been attracted by the magnificence and extent of New Jersey’s water-shed, and by the sweetness and purity of its waters.  Last year’s scheme was said to be intended to enable the tapping of New Jersey’s hills for the New York supply.”(New York Times, March 7, 1881)

Hobart was a resident of Paterson, New Jersey for most of his life. In 1885, Garret A. Hobart joined the Board of the Passaic Water Company and two years later was elected President of the Company.  Hobart was described in one source as representing a syndicate of New York capitalists. (Nelson and Shriner 1920) The company had been supplying Paterson and the surrounding area since 1857.

The East Jersey Water Company was formed on August 1, 1889 for the stated purpose of supplying Newark, New Jersey with a safe water supply.  All of the men who were shareholders of the new company (including Hobart) were identified with the Lehigh Valley Railroad Company.(New York Times, August 2, 1889) However, the company’s vision extended far beyond a water supply for Newark. The company began as a confidential syndicate composed of businessmen who were interested in executing grand plans for water supply in northern New Jersey and New York City. (Colby and Peck 1900) Nothing came of these grand plans.

Hobart was also a mentor to John L. Leal of Paterson and encouraged Leal to leave city employment and work full time as the sanitary advisor to several private water companies.(McGuire 2013)

“Hobart died on November 21, 1899 of heart disease at age 55; his place on the Republican ticket in 1900 was taken by New York Governor Theodore Roosevelt.”

References:

Colby, Frank M. and Harry T. Peck eds. The International Year Book—A Compendium of the World’s Progress During the Year 1899. n.p.:Dodd, Mead and Co., 1900.

McGuire, Michael J. 2013. The Chlorine Revolution: Water Disinfection and the Fight to Save Lives. Denver, CO:American Water Works Association.

Nelson, William and Charles A. Shriner. History of Paterson and Its Environs. Vol. 2, New York:Lewis Historical Publishing Company, 1920.

New York Times. “Jersey’s Water Supplies—Senator Hobart’s Bill and Its Effect.” March 7, 1881.

New York Times. “New Jersey’s Law Makers—Mr. Hobart’s Water Bill Killed.” March 22, 1881.

New York Times. “To Give Newark Water.” August 2, 1889.

November 19, 1914: Operations of Sewage Plants; 1914: Racine Sanitary Policies

Wisconsin Wastewater Operator Short Course Attendees 1937.

November 19, 1914Operation of Sewage Disposal Plants. By Francis E. Daniels. “A man in charge of a sewage disposal plant should know what each unit of his works is doing every day. A skilled observer may detect faults and short-comings with some degree of certainty by mere inspection; and if the output is bad and a heavy pollution is occurring or a local nuisance is resulting, it is not at all difficult to recognize the trouble. If the break-down has been sudden and due to a wash-out, a broken bed or wall or some other equally obvious cause, an expert is not needed to diagnose the case. But suppose the output of a plant or of some of its units is gradually falling below the requirements. In that case the gradual decline cannot be detected by observation and in order that one may know what is actually happening, tests are made….Careful attention paid to tank effluents will delay for years the expenditure of thousands of dollars for the removal, washing and replacing of the stone in contact beds. Poor effluents discharged upon sand beds cause clogging quickly, which results in undue expense for frequent cleaning and often the sand filter effluent is seriously impaired.

To the trained man in charge of a plant equipped with a laboratory, little advice is necessary. His training and facilities enable him to keep close check upon his charge; but for the good of the cause he is especially urged to do routine work along the standard lines and so record it that his results can be of use to others besides himself. His tests should conform to the requirements laid down in the ‘Standard Methods of Water Analysis,’ published by the American Public Health Association.”

Commentary: Of course, no mention is made the consequences of violating an NPDES permit or other regulation governing the quality of the effluent. Also, it gets tiresome to read these old articles that are directed to “men” when we now have a substantial number of women operators.

Main Street at Night, Racine, WI 1914.

November 19, 1914Sanitary Policy for Racine. “The city of Racine, Wis., over a year ago employed John W. Alvord to recommend to it a policy to be followed in connection with its sewerage and water supply. The study of the problem, in which Mr. Alvord was assisted by Edward Bartow, director of the Illinois State Water Survey, occupied most of the year 1913, and a report has recently been made to the city giving the method and results of the investigation and the recommendations of the consulting engineer.

The report outlined six different policies, either of which might be pursued, but one of which was recommended….The problems at Racine are common to many lake cities which are similarly situated at the mouth of a river and which draw their water supplies from inlets in the lake.

Investigation disclosed that the water supply, which is drawn from the Jake, is threatened and occasionally polluted by the sewage from the city which is discharged into Root river, which in turn discharges in to the lake. Pollution was found to exist for about two and a half miles from the shore, although the distance is variable, depending upon the influence of winds, lake drift, the volume of flow in the river and the effect of severe storms.

The water filtration plant recommended is of the mechanical type designed to filter and sterilize at least six million gallons of lake water daily. The sewage collected by the intercepting sewer system would consist of the normal or dry weather flow, which would be raised by electric pumps and delivered to the disposal plant. For this plant it is recommended that an area of not less than twenty-five acres be purchased. The plant itself is recommended to consist essentially of screens, tanks, dosing contact beds and sprinkling filters, the first installation having a capacity of ten million gallons a day.”

Commentary: Racine found itself entangled in the Sewer Pipe, Water Pipe Death Spiral that I have described in my book The Chlorine Revolution to be published in the spring of 2013. Chicago found itself with the exact same problems and solved them in part by chlorinating their water supply to break the Death Spiral. It appears that Mr. Alvord recommended a vast change in the way Racine conducted the business of sanitation—build an intercepting sewer, a sewage disposal plant and a water filtration plant. I am in favor of Mr. Alvord’s multi-barrier approach to public health protection.

References:  Daniels, Francis E. 1914. “Operation of Sewage Disposal Plants.” Municipal Journal. 38:21, November 19, 1914, 735.

“Sanitary Policy for Racine.” 1914. Municipal Journal. 38:21, November 19, 1914, 740.