Tag Archives: USGS

April 12, 1958: Death of Edward Bartow

April 12, 1958: Death of Edward Bartow. “Edward Bartow (1870–1958) was an American chemist and an expert in the field of sanitary chemistry. His career extended from 1897 to 1958 and he is best known for his work in drinking water purification and wastewater treatment. He was well known as an educator, and his many students went on to leadership positions in the fields of sanitary chemistry and engineering….

He began his career as an instructor of chemistry at Williams College about 1896. His first academic appointment was as an assistant professor of chemistry at the University of Kansas. He taught there from 1897 to 1905. While in Kansas, he worked with the U.S. Geological Survey analyzing the waters of southeastern part of the state.

His next position was as Director of the Illinois State Water Survey. He also held the title of professor of sanitary chemistry at the University of Illinois from 1905 to 1920. He led efforts to eliminate typhoid fever by developing treatment methodologies for water purification. In 1914, he began the first large-scale investigations of the new sewage treatment process called activated sludge. A bronze plaque was placed on the grounds of the Champaign-Urbana Sanitary District to commemorate the work on this process done by Bartow and his colleagues. The Illinois State Water Survey became well known for producing high quality work and the fourteen volumes of bulletins and reports published during his tenure are classics in the field of sanitary chemistry and engineering.

From 1920 until his retirement in 1940, he was professor of chemistry at the University of Iowa. He significantly enhanced the department and when he left, the number of PhD degrees awarded totaled 240 in chemistry and chemical engineering….

Bartow received many honors including an honorary D.Sc. from Williams College in 1923. Several societies honored him with life memberships. In 1971, he was inducted into the American Water Works Association Water Industry Hall of Fame.”

Commentary: This posting is from another one of the biographies of inductees into the Water Industry Hall of Fame that I wrote for Wikipedia.

Advertisements

March 3, 1879: U.S. Geological Survey Established; 1899: Rivers and Harbors Act Passed by Congress

1001 US-GeologicalSurvey-Seal.svgMarch 3, 1879: U.S. Geological Survey established by President Rutherford B. Hayes signing a bill authorizing money for the organization. “The USGS is a science organization that provides impartial information on the health of our ecosystems and environment, the natural hazards that threaten us, the natural resources we rely on, the impacts of climate and land-use change, and the core science systems that help us provide timely, relevant, and useable information.”

0303 Harbor PollutionMarch 3, 1899: Rivers and Harbors Act (also called the Refuse Act) passed by Congress. “The act is primarily aimed at preservation of navigable waters, but under Section 13 it becomes unlawful to throw garbage and refuse into navigable waters except with a Corps of Engineers permit. One exception is for liquid sewage from streets and sewers. Violators would be fined up to $2,500 and imprisoned up to one year. The new law consolidated four previous laws and had far-reaching implications. Dumping of oil, acids or other chemicals into streams was now prohibited insofar as navigation was obstructed, and in several cases the Supreme Court interpreted obstruction in a broad rather than narrow sense.”

January 12, 1933: Drought Cartoon; 1987: Cryptosporidiosis Outbreak in Georgia; 1870: Birth of Edward Bartow

0112 Drought CartoonJanuary 12, 1933: Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

Cryptosporidium oocysts on an intestinal cell surface, S.E.M. Image courtesy of Dr. Udo Hertzel,Verterinary Pathology, University of Liverpool

Cryptosporidium oocysts on an intestinal cell surface, S.E.M.
Image courtesy of Dr. Udo Hertzel,Verterinary Pathology, University of Liverpool

 

January 12, 1987: A large outbreak of cryptosporidiosis began on this day. “Between January 12 and February 7, 1987, an outbreak of gastroenteritis affected an estimated 13,000 (out of 64,900) people in Carroll County in western Georgia (including Carrollton, GA). Cryptosporidium oocysts were identified in the stools of 58 of 147 patients with gastroenteritis (39 percent) tested during the outbreak. Studies for bacterial, viral, and other parasitic pathogens failed to implicate any other agent. In a random telephone survey, 299 of 489 household members exposed to the public water supply (61 percent) reported gastrointestinal illness, as compared with 64 of 322 (20 percent) who were not exposed (relative risk, 3.1; 95 percent confidence interval, 2.4 to 3.9). The prevalence of IgG [Immunoglobulin G—an antibody isotype] to Cryptosporidium was significantly higher among exposed respondents to the survey who had become ill than among nonresident controls. Cryptosporidium oocysts were identified in samples of treated public water with use of a monoclonal-antibody test. Although the sand-filtered and chlorinated water system met all regulatory-agency quality standards, sub-optimal flocculation and filtration probably allowed the parasite to pass into the drinking-water supply. Low-level Cryptosporidium infection in cattle in the watershed and a sewage overflow were considered as possible contributors to the contamination of the surface-water supply. We conclude that current standards for the treatment of public water supplies may not prevent the contamination of drinking water by Cryptosporidium, with consequent outbreaks of cryptosporidiosis.”

A single Cryptosporidium oocyst

A single Cryptosporidium oocyst

Commentary: This outbreak caused a lot of concern in the drinking water community, but it was the epidemic of cryptosporidiosis in Milwaukee in April six years later that drove the second phase of the enhanced surface water treatment rule.

Reference: Hayes, E.B. et al. 1989. “Large community outbreak of cryptosporidiosis due to contamination of a filtered public water supply.” N. Engl J Med. 320:21(May 25): 1372-6.0112 Edward_BartowJanuary 12, 1870: Edward Bartow was born. “Edward Bartow (1870–1958) was an American chemist and an expert in the field of sanitary chemistry. His career extended from 1897 to 1958 and he is best known for his work in drinking water purification and wastewater treatment. He was well known as an educator, and his many students went on to leadership positions in the fields of sanitary chemistry and engineering….

He began his career as an instructor of chemistry at Williams College about 1896. His first academic appointment was as an assistant professor of chemistry at the University of Kansas. He taught there from 1897 to 1905. While in Kansas, he worked with the U.S. Geological Survey analyzing the waters of southeastern part of the state.

His next position was as Director of the Illinois State Water Survey. He also held the title of professor of sanitary chemistry at the University of Illinois from 1905 to 1920. He led efforts to eliminate typhoid fever by developing treatment methodologies for water purification. In 1914, he began the first large-scale investigations of the new sewage treatment process called activated sludge. A bronze plaque was placed on the grounds of the Champaign-Urbana Sanitary District to commemorate the work on this process done by Bartow and his colleagues. The Illinois State Water Survey became well known for producing high quality work and the fourteen volumes of bulletins and reports published during his tenure are classics in the field of sanitary chemistry and engineering.

From 1920 until his retirement in 1940, he was professor of chemistry at the University of Iowa. He significantly enhanced the department and when he left, the number of PhD degrees awarded totaled 240 in chemistry and chemical engineering….

Bartow received many honors including an honorary D.Sc. from Williams College in 1923. Several societies honored him with life memberships. In 1971, he was inducted into the American Water Works Association Water Industry Hall of Fame.”

November 3, 2015: AWWA Opens Office in India; 1888: Irrigation of the Arid West

1103 AWWAIndiaNovember 3, 2015: AWWA Opens Office in India. “The office of AWWAIndia, part of AWWA’s vision of “A better world through better water,” is up and running, signing up members and developing strategies to improve drinking water quality for the nation’s 1.29 billion people.

The office, located in Mumbai, is the headquarters of AWWA’s first international community outside North America and is staffed by three paid workers and five volunteers.

“Our volunteers are passionate about water,” said Gaurav Sood, the office’s executive manager. “I feel their energy and they are very upbeat. They feel that, ‘Yes, we can make a difference.’”

A launch event was held Nov. 3 in Mumbai and included dinner, cocktails and keynote addresses by Dr. Mrs. Malini Shankar, Addl. Chief Secretary, Department of Environment, Government of Maharashtra, who spoke on “Integration of Water & Sanitation” and Dr. Harish Shetty, a social psychiatrist whose talk was entitled “Blood Red Waters — Drought, Farmers and Suicides.” About 90 water professionals attended.

On Nov. 5 a mini-launch was held in Hyderabad – about 440 miles southeast of Mumbai — where the town’s water supply and sewer board hosted a two-hour get-together to discuss India’s water issues and how it can partner with AWWA.

Among AWWAIndia’s priorities is to develop training for water operators and managers and talk with utilities, consultants, end-users, government leaders and others about certificate training programs.”

This photo, taken in June of 1866, shows the location of the 100th Meridian west of Omaha. The 100th Meridian is an imaginary longitudinal line, which runs from the Dakotas south through Texas, that roughly separates the moist East from the arid West.

This photo, taken in June of 1866, shows the location of the 100th Meridian west of Omaha. The 100th Meridian is an imaginary longitudinal line, which runs from the Dakotas south through Texas, that roughly separates the moist East from the arid West.

November 3, 1888: Article in Engineering News–Irrigation in the Arid Region of the United States. “An answer to some of the wild hopes regarding irrigation in the arid regions west of the Mississippi, and an answer also to the wilder misstatements regarding the feasibility of the project, is found in the letter of Maj. J.A. Powell, Director of the Geological Survey, to Secretary [of the Interior] William F. Vilas.

Maj. Powell says that the area of the arid region is about 1,300,000 sq. miles, and that 1,000,000 sq. miles of this only need water to make it productive. At $30 per acre, a moderate estimate for irrigated land, this area would represent the enormous aggregate value of $19,200,000,000. Over this region the annual precipitation ranges from 5 ins. or less on the driest plains, to 30 ins. on the mountains, with an average for the whole region of about 15 ins. If this could be applied to the land, there would be about double the amount required during the growing season….

Under such adverse conditions it is manifest that only a small portion of the rainfall of the region can be made to serve the farmer, and that there is no solid foundation for the opinion sometimes expressed that the greater part of our arid west will ultimately be reclaimed. In 1880 less than 1 per cent of its arable portion had been supplied with irrigation water, and it is not believed that with the most elaborate irrigation works this can be increased to more than 20 per cent….

…the 15 per cent…as capable of improvement by irrigation, while it is now valueless, exceeds by about 20,000 sq. miles the combined area of England, Scotland, Ireland and Wales, and is well worth adding to the revenue producing territory of this country.”

Reference:  “Irrigation in the Arid Region of the United States.” Engineering News. 20 (November 3, 1888): 351.

Commentary: This extraordinary document predates the enormous irrigation projects planned and executed by the federal government through the Bureau of Reclamation. Just think of the vision and fortitude that was necessary to make these dreams a reality.

October 1, 1896: Standpipe Failure; 1896: Philadelphia Filtration; 1913: Water Year Start

1001 Stand Pipe Failure at Garden City KansasOctober 1, 1896: Engineering News article. A Stand-Pipe Failure at Garden City, Kan. “Sir: A brief note in regard to the failure of the Garden City stand-pipe, another addition to the already large number of failures of these structures, may be of interest to the readers of Engineering News.

This stand-pipe was built by Palmer & Son, of Kansas City, Mo. It was located about one-fourth mile from the Arkansas River, and a few feet above its bed. It was 10 ft. in diameter, 130 ft. high, and was supported on a masonry foundation on a level with the surface of the ground…

About four years after erection a crack appeared on the west side of the pipe, in the angle iron connecting the bottom to the first course. This was soldered but continued to leak and about 21/2 years before the failure a new piece of angle, about 5 ft. long, was put in. Four of the six brackets had their legs broken about this time, and were repaired by bolting to them a strap of iron which passed down around the anchor bolt.

On April 30, 1896, during a very high wind from the northwest, estimated to have a velocity of 60 to 70 miles per hour, with occasional gusts of 90 miles, and which wrecked many of the windmills in this vicinity, a crack appeared on the north aide of the bottom angle iron. This crack increased in size for 11/4 hours, until it was 5 ft. long, with the water rushing out rapidly. Suddenly the angle iron to which the north guy was fastened gave way and the pipe blew over in the southwest direction. The pipe was about one-fourth full at the time of failure with both pumps delivering into it at nearly their full capacity.

The bottom angle iron broke at the angle all the way around except where the new piece was put in, where the first course failed along the rivets. All the brackets were broken, and the bottom was broken somewhat at its center around the entrance pipe.

It seems quite clear that the failure was due to three causes: (1) The weakness in the angle iron connecting the bottom and first course; (2) to the brackets not being long and strong enough; and (3) to the fastening of the guys being weak.

  1. C. Murphy, Hydrographer U. S. Geological Survey.”

Commentary: Sometimes we need to remember our failures as well as our successes. It was through an analysis of these failures that eventually water standpipes were properly designed and constructed in the U.S.

1001 Philadelphia Water Source ContaminationOctober 1, 1896: Engineering News article. Filtration of the Philadelphia Water Supply. “A vigorous crusade against the further use of Schuylkill River water, without filtration, is being led by the Woman’s Health Protective Association of Philadelphia, and the subject is being actively discussed by the press of that city. All admit that the present supply is impure, and that the water from this river is blackened with coal dust or made yellow by mud at every high stage In the river, and that it is liable to contamination from six cities upon its banks above Philadelphia, whose aggregate population Is 350,000. An entirely new supply, from a distant source of permanent purity, is undoubtedly the most attractive solution to the difficult problem presented, and for years put extensive surveys and investigations have been made with that end in view. But the enormous cost of such an undertaking, coupled with the lack of available means in the City Treasury and the disinclination to permit a private company to control the water supply of Philadelphia, have so far prevented any of the many projects of this sort which have been brought forward from being carried out.

Filtration has been often suggested, in Philadelphia. Several years ago certain parties backed by the city press, seriously recommended the location of filter-beds or filter-galleries In the River Schuylkill itself, an absurd scheme, which was dropped as soon as computations were made of the area required for the quantity of water to be filtered, the cost of construction, and the difficulties and risks of maintenance. But since the success of sand filtration as a means of purification of water has become generally understood, the intelligent citizens of Philadelphia have become strongly in favor of the construction of a system of filter beds. Our readers will recall that an appropriation to build a single filter-bed was before the Philadelphia Councils some months ago, and was only defeated by a close vote.

Recently the agitation for filtration has been started anew by the publication of a report upon the project of filtering the city’s water supply made to the Woman’s Health Protective Association by Mr. Allen Hazen, of the firm of Hazen & Noyes, of Boston.”

1001 Philadelphia TyphoidDeathRateCommentary: This article is important for several reasons. It highlights the struggle to choose between finding a “pure” upland source of water versus treating water supplies that were available locally. The fact that a citizens group got involved and hired Allen Hazen is notable. In the late 1890s, hundreds of cities were dealing with the same problem—contaminated water supplies. However, most of them did nothing for a long period of time and many people died. Philadelphia had a lot of trouble getting the political muscle organized to make it happen. An excellent website created by the Water Department historian highlights the struggle over filter construction. “Between 1900 and 1911, Philadelphia built a system of five [slow] sand filtration plants on high ground along the Delaware and Schuylkill rivers…Costing $28 million, the filtration system was the largest public works project in the city up to that time and the largest filtration works in the world.”

Reference: Engineering News. 36:14(October 1, 1896): 218-9.

1001 US-GeologicalSurvey-Seal.svgOctober 1, 1913: October 1 is the first day of a water year. “A water year is term commonly used in hydrology to describe a time period of 12 months. It is defined as the period between October 1st of one year and September 30th of the next. The water year is designated by the calendar year in which it ends. (the year within which 9 of the 12 months fall). Thus the 2010 water year started on October 1, 2009 and ended on September 30, 2010. Use of water year as a standard follows the US national water supply data publishing system that was started in 1913. This time interval is often used by hydrologists because hydrological systems in the northern hemisphere are typically at their lowest levels near October 1. The increased temperatures and generally drier weather patterns of summer give way to cooler temperatures, which decreases evaporation rates. Rain and snow replenish surface water supplies.”

April 12, 1958: Death of Edward Bartow

0112 Edward_BartowApril 12, 1958: Death of Edward Bartow. “Edward Bartow (1870–1958) was an American chemist and an expert in the field of sanitary chemistry. His career extended from 1897 to 1958 and he is best known for his work in drinking water purification and wastewater treatment. He was well known as an educator, and his many students went on to leadership positions in the fields of sanitary chemistry and engineering….

He began his career as an instructor of chemistry at Williams College about 1896. His first academic appointment was as an assistant professor of chemistry at the University of Kansas. He taught there from 1897 to 1905. While in Kansas, he worked with the U.S. Geological Survey analyzing the waters of southeastern part of the state.

His next position was as Director of the Illinois State Water Survey. He also held the title of professor of sanitary chemistry at the University of Illinois from 1905 to 1920. He led efforts to eliminate typhoid fever by developing treatment methodologies for water purification. In 1914, he began the first large-scale investigations of the new sewage treatment process called activated sludge. A bronze plaque was placed on the grounds of the Champaign-Urbana Sanitary District to commemorate the work on this process done by Bartow and his colleagues. The Illinois State Water Survey became well known for producing high quality work and the fourteen volumes of bulletins and reports published during his tenure are classics in the field of sanitary chemistry and engineering.

From 1920 until his retirement in 1940, he was professor of chemistry at the University of Iowa. He significantly enhanced the department and when he left, the number of PhD degrees awarded totaled 240 in chemistry and chemical engineering….

Bartow received many honors including an honorary D.Sc. from Williams College in 1923. Several societies honored him with life memberships. In 1971, he was inducted into the American Water Works Association Water Industry Hall of Fame.”

Commentary: This posting is from another one of the biographies of inductees into the Water Industry Hall of Fame that I wrote for Wikipedia.

January 12, 1933: Drought Cartoon; 1987: Cryptosporidiosis Outbreak in Georgia; 1870: Birth of Edward Bartow

0112 Drought CartoonJanuary 12, 1933: Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

A single Cryptosporidium oocyst

A single Cryptosporidium oocyst

January 12, 1987: A large outbreak of cryptosporidiosis began on this day. “Between January 12 and February 7, 1987, an outbreak of gastroenteritis affected an estimated 13,000 people in a county of 64,900 residents in western Georgia. Cryptosporidium oocysts were identified in the stools of 58 of 147 patients with gastroenteritis (39 percent) tested during the outbreak. Studies for bacterial, viral, and other parasitic pathogens failed to implicate any other agent. In a random telephone survey, 299 of 489 household members exposed to the public water supply (61 percent) reported gastrointestinal illness, as compared with 64 of 322 (20 percent) who were not exposed (relative risk, 3.1; 95 percent confidence interval, 2.4 to 3.9). The prevalence of IgG [Immunoglobulin G—an antibody isotype] to Cryptosporidium was significantly higher among exposed respondents to the survey who had become ill than among nonresident controls. Cryptosporidium oocysts were identified in samples of treated public water with use of a monoclonal-antibody test. Although the sand-filtered and chlorinated water system met all regulatory-agency quality standards, sub-optimal flocculation and filtration probably allowed the parasite to pass into the drinking-water supply. Low-level Cryptosporidium infection in cattle in the watershed and a sewage overflow were considered as possible contributors to the contamination of the surface-water supply. We conclude that current standards for the treatment of public water supplies may not prevent the contamination of drinking water by Cryptosporidium, with consequent outbreaks of cryptosporidiosis.”

Commentary: This outbreak caused a lot of concern in the drinking water community, but it was the epidemic of cryptosporidiosis in Milwaukee in April six years later that drove the second phase of the enhanced surface water treatment rule.

Reference: Hayes, E.B. et al. 1989. “Large community outbreak of cryptosporidiosis due to contamination of a filtered public water supply.” N. Engl J Med. 320:21(May 25): 1372-6.

0112 Edward_BartowJanuary 12, 1870: Edward Bartow was born. “Edward Bartow (1870–1958) was an American chemist and an expert in the field of sanitary chemistry. His career extended from 1897 to 1958 and he is best known for his work in drinking water purification and wastewater treatment. He was well known as an educator, and his many students went on to leadership positions in the fields of sanitary chemistry and engineering….

He began his career as an instructor of chemistry at Williams College about 1896. His first academic appointment was as an assistant professor of chemistry at the University of Kansas. He taught there from 1897 to 1905. While in Kansas, he worked with the U.S. Geological Survey analyzing the waters of southeastern part of the state.

His next position was as Director of the Illinois State Water Survey. He also held the title of professor of sanitary chemistry at the University of Illinois from 1905 to 1920. He led efforts to eliminate typhoid fever by developing treatment methodologies for water purification. In 1914, he began the first large-scale investigations of the new sewage treatment process called activated sludge. A bronze plaque was placed on the grounds of the Champaign-Urbana Sanitary District to commemorate the work on this process done by Bartow and his colleagues. The Illinois State Water Survey became well known for producing high quality work and the fourteen volumes of bulletins and reports published during his tenure are classics in the field of sanitary chemistry and engineering.

From 1920 until his retirement in 1940, he was professor of chemistry at the University of Iowa. He significantly enhanced the department and when he left, the number of PhD degrees awarded totaled 240 in chemistry and chemical engineering….

Bartow received many honors including an honorary D.Sc. from Williams College in 1923. Several societies honored him with life memberships. In 1971, he was inducted into the American Water Works Association Water Industry Hall of Fame.”