Tag Archives: water

November 19, 1914: Operations of Sewage Plants; 1914: Racine Sanitary Policies

Wisconsin Wastewater Operator Short Course Attendees 1937.

November 19, 1914Operation of Sewage Disposal Plants. By Francis E. Daniels. “A man in charge of a sewage disposal plant should know what each unit of his works is doing every day. A skilled observer may detect faults and short-comings with some degree of certainty by mere inspection; and if the output is bad and a heavy pollution is occurring or a local nuisance is resulting, it is not at all difficult to recognize the trouble. If the break-down has been sudden and due to a wash-out, a broken bed or wall or some other equally obvious cause, an expert is not needed to diagnose the case. But suppose the output of a plant or of some of its units is gradually falling below the requirements. In that case the gradual decline cannot be detected by observation and in order that one may know what is actually happening, tests are made….Careful attention paid to tank effluents will delay for years the expenditure of thousands of dollars for the removal, washing and replacing of the stone in contact beds. Poor effluents discharged upon sand beds cause clogging quickly, which results in undue expense for frequent cleaning and often the sand filter effluent is seriously impaired.

To the trained man in charge of a plant equipped with a laboratory, little advice is necessary. His training and facilities enable him to keep close check upon his charge; but for the good of the cause he is especially urged to do routine work along the standard lines and so record it that his results can be of use to others besides himself. His tests should conform to the requirements laid down in the ‘Standard Methods of Water Analysis,’ published by the American Public Health Association.”

Commentary: Of course, no mention is made the consequences of violating an NPDES permit or other regulation governing the quality of the effluent. Also, it gets tiresome to read these old articles that are directed to “men” when we now have a substantial number of women operators.

Main Street at Night, Racine, WI 1914.

November 19, 1914Sanitary Policy for Racine. “The city of Racine, Wis., over a year ago employed John W. Alvord to recommend to it a policy to be followed in connection with its sewerage and water supply. The study of the problem, in which Mr. Alvord was assisted by Edward Bartow, director of the Illinois State Water Survey, occupied most of the year 1913, and a report has recently been made to the city giving the method and results of the investigation and the recommendations of the consulting engineer.

The report outlined six different policies, either of which might be pursued, but one of which was recommended….The problems at Racine are common to many lake cities which are similarly situated at the mouth of a river and which draw their water supplies from inlets in the lake.

Investigation disclosed that the water supply, which is drawn from the Jake, is threatened and occasionally polluted by the sewage from the city which is discharged into Root river, which in turn discharges in to the lake. Pollution was found to exist for about two and a half miles from the shore, although the distance is variable, depending upon the influence of winds, lake drift, the volume of flow in the river and the effect of severe storms.

The water filtration plant recommended is of the mechanical type designed to filter and sterilize at least six million gallons of lake water daily. The sewage collected by the intercepting sewer system would consist of the normal or dry weather flow, which would be raised by electric pumps and delivered to the disposal plant. For this plant it is recommended that an area of not less than twenty-five acres be purchased. The plant itself is recommended to consist essentially of screens, tanks, dosing contact beds and sprinkling filters, the first installation having a capacity of ten million gallons a day.”

Commentary: Racine found itself entangled in the Sewer Pipe, Water Pipe Death Spiral that I have described in my book The Chlorine Revolution to be published in the spring of 2013. Chicago found itself with the exact same problems and solved them in part by chlorinating their water supply to break the Death Spiral. It appears that Mr. Alvord recommended a vast change in the way Racine conducted the business of sanitation—build an intercepting sewer, a sewage disposal plant and a water filtration plant. I am in favor of Mr. Alvord’s multi-barrier approach to public health protection.

References:  Daniels, Francis E. 1914. “Operation of Sewage Disposal Plants.” Municipal Journal. 38:21, November 19, 1914, 735.

“Sanitary Policy for Racine.” 1914. Municipal Journal. 38:21, November 19, 1914, 740.

Advertisements

November 18, 1987: Sludge Dumping Ground Closed Down; 1995: New York City Water Supply Protection

Sludge Dumping Ground

November 18, 1987New York Times headline— New York Quits Using An Ocean Dump Site. “New York City used an ocean dumping site 12 miles offshore for the last time yesterday. It plans to use a site 106 miles out for dumping sewage treatment waste from now on. New York City and other localities have been using the 12-mile site to dump sludge since 1938. Under an agreement with the Federal Environmental Protection Agency, the city began disposing of 10 percent of the city’s sludge at the 106-mile dumping grounds last April. The city disposes of 3.8 million wet tons of sludge annually from its 14 sewage treatment plants.”

November 18, 1995New York Times headline—Watershed Pact Safeguards Drinking Water. “To the Editor:  While according deserved praise on the historic agreement to protect New York City’s drinking water, Eric A. Goldstein (letter, Nov. 10) asserts that “the agreement lacks concrete commitments needed to prevent further pollution.” As one of Mayor Rudolph W. Giuliani’s negotiators, let me assure your readers that the watershed agreement contains commitments that will protect drinking water quality into the next century.

The pact contains three principal elements: acquisition of sensitive watershed lands to buffer the water supply, revision of the city’s regulations governing activities in the watershed that affect water quality and partnership programs with upstate communities that will insure that any growth near the water supply will be consistent with drinking water quality needs.

The agreement does not authorize the construction of six new sewage plants. To examine the feasibility of pollution credit trading, a five-year pilot program will authorize towns to apply to build up to six new plants only if the sponsor offsets each unit of pollution added by a new plant with the removal of three units elsewhere. Total discharge will be limited, and each plant would use the most rigorous pollution removal technology available….Marilyn Gelber, Commissioner, Department of Environmental Protection New York.”

November 17, 1904: Death of Thomas M. Drown

November 17, 1904Death of Thomas M. Drown. “Drown was known as a chemist and metallurgist and he was the fourth President of Lehigh University. “In the 1880s, Drown held a leadership post in chemistry at the Massachusetts Institute of Technology. He helped start MIT’s chemical engineering curriculum in the late 1880s. In 1887, he was appointed by the newly-formed Massachusetts Board of Health to a landmark study of sanitary quality of the state’s inland waters. As Consulting Chemist to the Massachusetts State Board of Health, he was in charge of the famous Lawrence Experiment Station laboratory conducting the water sampling, testing, and analysis. There he put to work the environmental chemist and first female graduate of MIT, Ellen Swallow Richards. This research created the famous “normal chlorine” map of Massachusetts that was the first of its kind and was the template for others. As a result, Massachusetts established the first water-quality standards in America, and the first modern sewage treatment plant was created.”

Commentary: Drown taught all of the famous engineering graduates from MIT who we revere today—George Warren Fuller, George C. Whipple and Allen Hazen (chemistry courses). Below is the Normal Chlorine Map from a book by Ellen Swallow Richards. It shows that chloride concentrations in ground and surface waters increase as one nears the coastline of the Atlantic Ocean. Any significant deviations from the “normal” levels of chloride in a water source indicated sewage contamination.

Normal Chlorine Map

November 16, 1918: Sanitary Survey of Unnamed City

Privy in terrible condition

November 16, 1918Municipal Journal. A Sanitary Survey of an Unnamed City. The conditions about which you will read were by no means unusual in 1918 in the U.S. “A State Board of Health a few months ago, made a sanitary survey of a certain city (the name of which is unessential) which was of more than usual interest, because of its thoroughness and the sensible recommendations based upon it….

The city in question has a population of about 30,000, of which negroes form a small percentage for a southern city. Although the city is not large, topographical conditions are such as to confine its growth in area, with the result that it presents many of the characteristics of a large, crowded city…. In 1916 fifteen cases of death from typhoid fever were reported, and it is believed that the number was even somewhat greater than this…. A comparison of the distribution of the typhoid cases with the wells and privies indicates that the latter have played an important role in the spread of the disease, the typhoid areas largely coinciding with the unsewered districts, without city water. It should be noted further that these “typhoid areas” are located on steep hillsides where the drainage from privy to well is rapid and direct….

The water supply of the city is derived from the river that flows through it, the intake being located at a point near the upper boundary of the city. This river has a water-shed of 1,550 square miles of mountainous and rather thinly populated territory….Examinations of the river for miles upstream have shown its waters to be heavily polluted before they enter the city. While none of the municipal sewers empty into the river above the waterworks intake [thank goodness], there are two small runs draining an extensive unsewered area which is thickly populated….Thus it is seen that the source of supply is always polluted to a greater or less degree, becoming at times a source of most extreme danger. Only the most thorough filtration and after-treatment can render a water of this character uniformly safe for drinking purposes. Unfortunately the skilled attention that is absolutely essential for the successful operation of a filter plant has not been had until recently.

Purification is secured by coagulation and sedimentation, followed by filtration through so-called mechanical or rapid gravity filters and final treatment with chlorine gas….Just before entering the sedimentation basins, the water receives its dose of coagulant consisting of lime and sulphate of alumina in amounts depending upon the character of the river water as shown by its alkalinity and turbidity….

The man who installed the original hypochlorite plant for final treatment of the water painted its virtues so very bright that he assured the water company that when the river was clear they need not use any chemicals except hypochlorite of lime. It is felt that this ill-advised suggestion may have been in part responsible for the epidemic of typhoid fever the city has just experienced.

The sedimentation basins are two in number, each having a capacity of about 238,000 gallons. At the normal rate of filtration this provides for but one and three-fourths hours storage, a period that is considered far too short to be comparable with adequate coagulation and sedimentation. The control of the chemicals constitutes another objection. The solutions are prepared in large tanks from which they are fed through hand-operated orifices and the rate of dosing is recorded as inches in depth of the tank per hour. Constant-feed, calibrated orifice boxes should be supplied, that the dosing may be more accurately controlled. [see design of such a feed system by George Warren Fuller at the Little Falls treatment plant, Fuller 1903]

From the sedimentation basins the water flows by gravity to the filters, of which there are ten units, each having a superficial area of 230 square feet. At a normal rate of two gallons per square foot a minute, or 125 million gallons per acre per twenty-four hours, the ten units have a combined capacity of about 6.5 million gallons a day. As originally constructed, each unit was provided with a loss-of-head gage, rate controller, and individual sampling pump, all of which equipment has now been dismantled. A loss-of-head gage is essential if accurate knowledge of what each unit is doing and of the proper time to wash is to be had. As it now is, the filter man guesses at the proper time to wash the dirt out of the filter by the position of the inlet float; the dirtier the sand, the higher the level of water on the bed and the more quiet the float—a rather round-about method.

After washing, the filters are allowed to waste for a short time and then turned into the clear well. The lack of any rate controllers on the filters makes it certain that the most recently washed units will be filtering far in excess of the rate for which they were designed. Rate controllers would prevent the units from delivering more than a definite maximum at any time. With as small a clear-well as the one here provided (approximately 37,000 gallons), the lack of this important device becomes even more dangerous in that the pull of the high-service pumps is thrown almost directly upon the filters….

Washing of the filters is effected by forcing water and air through them from below. The water for washing is taken directly from the clear well by an electrically driven centrifugal pump. As has been previously noted, washing cannot be conducted on anything like a scientific basis owing to the lack of loss-of-head gages. The filters are, however, washed at least once a day, and more often if deemed necessary.

From the clear-water well, which is located beneath the filters, the water flows to the high-service pumps, receiving on the way a final treatment with chlorine. Chlorine gas is an excellent sterilizing agent in water, and small doses can effect a remarkable reduction in the number of bacteria present. The chlorine gas is introduced by a direct-feed manual-control chlorinator. In this plant the fact that the dose is not automatically controlled is extremely unfortunate, and if the plant were not in the hands of a skilled filter operator would be a very serious objection….

With a safe and potable water available [forsooth!], there is no excuse for the continuation in use of the 189 private wells in the city. While no analyses have been made to learn the extent to which the wells are polluted, there can be little doubt from their location and construction that many of them are dangerously contaminated.” (emphasis added)

Commentary:  The hard, cold, and alarming facts related in this 1918 sanitary survey of an anonymous southern U.S. city make it quite evident why its identity was not revealed. The typhoid death rate of 50 per 100,000 people in 1916 is shockingly high for a city that is served by a water supply that was both filtered and chlorinated. Obviously, something is terribly wrong with the operation of the treatment plant and the condition of private wells. The person conducting the sanitary survey expressed some optimism about current personnel and operations, but a sanitary survey conducted a year after would be needed to see if that optimism was justified.

The problems related in this sanitary survey should make us all glad that we live in the 21st century where we are blessed (at least in developed countries) with safe drinking water supplies.

Reference:  “A Sanitary Survey of a City.” 1918. Municipal Journal. 45:19 November 9, 1918, 359-61, 383-6.

November 15, 1910: New York Abolishes Common Cup

November 15, 1910New York Times headline—Would Abolish Common Cup. “Albany, Nov. 15—“There is no excuse for a public drinking cup, on the train or anywhere else, now that penny-in-the-slot machines serve out paper cups and that metal collapsible cups can be purchased for a dime,” says a circular sent out by the State Department of Health. The Health Department is co-operating with the railroads to do away with the public drinking cup on trains and in railroad stations. It is stated that there is great possibility of the transmission of disease by the use of the common drinking cup….”

CommentaryOn October 30, 2012, we observed the 100th anniversary of the first drinking water regulation, which was adopted by the U.S. Treasury Department that prohibited the use of the common drinking cup on interstate carriers. Individual states like New York and Kansas led the way by raising awareness of this serious public health problem. Seven articles in my blog safedrinkingwaterdotcom provided a countdown to the anniversary date.

November 13, 565 CE: Basilica Cistern; 1988: Sewage in Santa Monica Bay; 2003: Death of Sewer Worker

November 13, 565 AD:  End of the reign of Byzantine Emperor Justinian I, builder of the Basilica Cistern. “The Basilica Cistern (Turkish: Yerebatan Sarayı – Sunken Palace, or Yerebatan Sarnıcı – Sunken Cistern), is the largest of several hundred ancient cisterns that lie beneath the city of Istanbul (formerly Constantinople), Turkey. The cistern, located 500 feet southwest of the Hagia Sophia on the historical peninsula of Sarayburnu, was built in the 6th century during the reign of Byzantine Emperor Justinian I. This cathedral-size cistern is an underground chamber approximately 453 by 212 feet – about 105,000 square feet in area – capable of holding 2,800,000 cubic feet [or 21 million gallons] of water. The ceiling is supported by a forest of 336 marble columns, each 9 30 feet high, arranged in 12 rows of 28 columns each spaced 16 feet apart. The capitals of the columns are mainly Ionic and Corinthian styles, with the exception of a few Doric style with no engravings.” (edited by MJM)

Istanbul has always had limited water resources. Water supplies had to be transported to the city through long canals and aqueducts. Istanbul has also been the target of invading armies and has had to rely on stored water during long sieges. For these reasons, underground and open-air cisterns have always been a part of the city fabric. Sometimes stored water in local cisterns had to last the city’s population for months. There is no official count of the number of cisterns that had been built in ancient times, but dozens have survived and many can be visited. The Basilica Cistern is the grandest of them all.

Commentary and Update:  The Basilica Cistern is one of the locations for the movie “Inferno” starring Tom Hanks and released October 28, 2016. Somehow they create destructive waves in this underground water reservoir.

November 13, 1988New York Times headline—Sewage in Santa Monica Bay. “Nearly seven miles of beaches are closed for the weekend because a cap on a sewer main 15 miles inland failed, causing a gush of raw sewage into Santa Monica Bay. The overflow, which apparently began Wednesday, caused bacteria levels in the ocean near Marina del Rey to rise to more than twice the safe levels for swimming, a city biologist, John Dorsey, said Friday.”

November 13, 2003New York Times headline—Appreciations, Death of a Sewer Worker. “New York is a mythic place, and one of the most mythic parts of it is the part that nobody ever sees: the sewers. Alligators and giant rats barely begin to sum up the state of our fears about the sewers, when we acknowledge those fears at all. So it’s worth remembering how great a joke it is that the New York city sewers should also contain Ed Norton, played on ”The Honeymooners” by Art Carney, who died on Sunday at 85.”

November 12, 1881: Paterson, NJ Water Supply; 1732: Pitot Tube Invention

Great Falls at Paterson, New Jersey

November 12, 1881: Article in Engineering News—The History and Statistics of American Water-Works. “Paterson, New Jersey, is on the Passaic River, about 16 miles NW of New York City, at the point where the river breaks through the great trap-dyke called the Watchung or Orange Mountain, and falls 80 ft. The water power afforded by this fall with a water-shed of 855 square miles above it, was purchased in 1791 ‘by the Society for the Encouragement of Useful Manufactures,’ and is still controlled by them. A dam across the river a short distance above the falls diverts the water into a canal, from which it is drawn to furnish power to 13 manufacturing establishments.

Water-works were built in 1856 by a private company, taking the supply from the river at the edge of the falls and below the Society’s dam. The surplus flow of the river passing over the dam was used for power and for supply. A turbine wheel was placed in a rift in the face of the falls, which, being erected over the masonry made a tail race. The wheel drove a piston pump which forced the water into a small reservoir on an eminence in the city. As the consumption increased, the amount of water in the river which was not used for mill purposes was insufficient for motive power and supply, notwithstanding the erection by the company of a small stone dam along the face of the falls, making a little pool for storage below the Society’s dam. In 1878, a Worthington high-pressure engine and pump of 8,000,000 gallons’ capacity were erected. The original pumps driven by water force have been replaced by others. There are now two horizontal pumps with a combined capacity of 14,000,000 gallons per day, and one with 2,000,000 capacity. There are three reservoirs, built in excavation and embankment, supplying different levels of the city. Their capacities are, respectively, 8, 8, and 2,000,000 gallons.”

Reference: Croes, J. James. “The History and Statistics of American Water-Works.” Engineering News. 8 (November 12, 1881): 459.

CommentaryThe water supply for Paterson figures prominently in my book, The Chlorine Revolution, which was published in April 2013. Dr. John L. Leal was the Public Health Officer for Paterson from 1890 to 1899 and he was responsible for the safety of this water supply. In 1899 because of increasing contamination of the Passaic River, the water supply withdrawal point was moved 5 miles upstream to Little Falls.

Different Early Versions of the Pitot Tube

November 12, 1732Today in Science History. “In 1732, Henri Pitot read a paper to the Royal Academy of Sciences in Paris about an instrument he had invented to measure the flow velocity at different depths of water in the River Seine. It had a scale and two open vertical glass tubes on a wood frame. The lower end of one pointed down, the other bent at 90º facing the flow. The belief of the time was that flow velocity at a given depth was proportional to the mass above it, meaning increasing velocity at greater depth. Recording the difference in liquid levels in the two tubes, he showed the opposite was true. Henri Darcy improved the design, with the support of Henri Bazin.”