Tag Archives: William Ripley Nichols

April 30, 1991: Drought Cartoon; 1847: Birth of William Ripley Nichols

April 30, 1991:  Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

April 30, 1847:  William Ripley Nichols is born.“William Ripley Nichols (April 30, 1847 – July 14, 1886) was a noted American chemist [only 39 years old at his death]. Nichols was born in Boston, Massachusetts, graduated from the Massachusetts Institute of Technology in 1869, and served there as instructor and assistant professor until 1872, when he was elected professor of general chemistry, which chair he retained until his death in Hamburg, Germany. Professor Nichols was recognized as an authority on sanitation, and particularly on water purification, published numerous papers on municipal water supplies, and was active in the pioneering work of the Lawrence Experiment Station. He was a member of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, of which he was Vice President in 1885, and of the German Chemical Society.”

Nichols was also a mentor to Ellen Swallow Richardsat MIT. “In 1887, the laboratory, directed by Thomas Messinger Drown, conducted a study under Richards of water quality in Massachusetts for the Massachusetts State Board of Health involving over 20,000 samples, the first such study in America. Her data was used to find causes of pollution and improper sewage disposal. As a result, Massachusetts established the first water-quality standards in America and its first modern sewage treatment plant at Lowell, Massachusetts.”

Advertisements

October 4, 1921: Death of Hiram Mills who Birthed the First Sanitary Engineering Laboratory in the World

October 4, 1921Death of Hiram Francis Mills.“Born in Bangor, Maine, in the year 1836 and receiving his early schooling there, the young Hiram Mills moved on to the newly-established Renssalaer Polytechnic Institute to be graduated before he was twenty. When he was in his middle thirties he was appointed Chief Engineer of the Essex Company, the corporate owner of the Merrimack River dam and water power rights at Lawrence, Massachusetts. Ever research-minded, Mr. Mills induced the Essex Company to set up an outdoor hydraulic laboratory on the river bank below the power dam.

In the year 1886 came a momentous change in the direction of Mr. Mills’ scientific interests. In that year he was appointed a member of the recently reorganized State Board of Health. At the first meeting he was chosen by his associates to be chairman of the Board’s Committee on Water Supplies and Sewage; and from hydraulics, Hiram Mills’ chief scientific concern in life turned to sanitation.

The law of 1886, re-creating the State Board of Health, empowered the members to investigate methods for the disposal of sewage, and Hiram Mills lost little time in seeing that the law’s intent was carried out. As the place for his projected studies in the best practical methods for safe sewage disposal, he persuaded the Essex Company to lend to Massachusetts the experimental plant the company had created for his hydraulic researches. With State funds a modest laboratory building was added to the existing structures, and the whole was renamed the Lawrence Experiment Station — the first research enterprise of its kind in our country.

Tanks for Filtration Experiments, 1903

It may fairly be said that the investigations which Mills was to plan and carry through to conclusion in this physically limited and always economically equipped plant laid the foundations for many of the scientific methods of treatment of drinking water and municipal wastes. Instead of investing in elaborate equipment and costly facilities. Mills invested in brains, as frequently he was pleased to point out, To man his researches, Mr. Mills drew upon the faculty and recent graduates of the Massachusetts Institute of Technology and thus employing their varied scientific skills, he perfected a unique investigating team whose inventiveness and productiveness are not likely to be seen again.” [editied by M.J. McGuire]

Lawrence Experiment Station, 1903

Commentary:  Members of the research team included George W. Fuller, Allen Hazenand William T. Sedgwick. MIT professors William Ripley NicholsEllen Swallow Richards, and Thomas M. Drown also played important early roles. Allen Hazen and George W. Fuller were in charge of some of the earliest research on sewage treatment and drinking water filtration. I think the author of the above piece is too modest. The Lawrence Experiment Station was the first sanitary engineering research laboratory in the world.

April 30, 1991: Drought Cartoon; 1847: Birth of William Ripley Nichols

April 30, 1991:  Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

April 30, 1847:  William Ripley Nichols is born.“William Ripley Nichols (April 30, 1847 – July 14, 1886) was a noted American chemist [only 39 years old at his death]. Nichols was born in Boston, Massachusetts, graduated from the Massachusetts Institute of Technology in 1869, and served there as instructor and assistant professor until 1872, when he was elected professor of general chemistry, which chair he retained until his death in Hamburg, Germany. Professor Nichols was recognized as an authority on sanitation, and particularly on water purification, published numerous papers on municipal water supplies, and was active in the pioneering work of the Lawrence Experiment Station. He was a member of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, of which he was Vice President in 1885, and of the German Chemical Society.”

Nichols was also a mentor to Ellen Swallow Richardsat MIT. “In 1887, the laboratory, directed by Thomas Messinger Drown, conducted a study under Richards of water quality in Massachusetts for the Massachusetts State Board of Health involving over 20,000 samples, the first such study in America. Her data was used to find causes of pollution and improper sewage disposal. As a result, Massachusetts established the first water-quality standards in America and its first modern sewage treatment plant at Lowell, Massachusetts.”

Normal Chlorine Map

October 4, 1921: Death of Hiram Mills

October 4, 1921Death of Hiram Francis Mills. “Born in Bangor, Maine, in the year 1836 and receiving his early schooling there, the young Hiram Mills moved on to the newly-established Renssalaer Polytechnic Institute to be graduated before he was twenty. When he was in his middle thirties he was appointed Chief Engineer of the Essex Company, the corporate owner of the Merrimack River dam and water power rights at Lawrence, Massachusetts. Ever research-minded, Mr. Mills induced the Essex Company to set up an outdoor hydraulic laboratory on the river bank below the power dam.

In the year 1886 came a momentous change in the direction of Mr. Mills’ scientific interests. In that year he was appointed a member of the recently reorganized State Board of Health. At the first meeting he was chosen by his associates to be chairman of the Board’s Committee on Water Supplies and Sewage; and from hydraulics, Hiram Mills’ chief scientific concern in life turned to sanitation.

The law of 1886, re-creating the State Board of Health, empowered the members to investigate methods for the disposal of sewage, and Hiram Mills lost little time in seeing that the law’s intent was carried out. As the place for his projected studies in the best practical methods for safe sewage disposal, he persuaded the Essex Company to lend to Massachusetts the experimental plant the company had created for his hydraulic researches. With State funds a modest laboratory building was added to the existing structures, and the whole was renamed the Lawrence Experiment Station — the first research enterprise of its kind in our country.

It may fairly be said that the investigations which Mills was to plan and carry through to conclusion in this physically limited and always economically equipped plant laid the foundations for many of the scientific methods of treatment of drinking water and municipal wastes. Instead of investing in elaborate equipment and costly facilities. Mills invested in brains, as frequently he was pleased to point out, To man his researches, Mr. Mills drew upon the faculty and recent graduates of the Massachusetts Institute of Technology and thus employing their varied scientific skills, he perfected a unique investigating team whose inventiveness and productiveness are not likely to be seen again.” [editied by M.J. McGuire]

Commentary: Members of the research team included George W. Fuller, Allen Hazen and William T. Sedgwick. MIT professors William Ripley NicholsEllen Swallow Richards, and Thomas M. Drown also played important early roles. Allen Hazen and George W. Fuller were in charge of some of the earliest research on sewage treatment and drinking water filtration.

April 30, 1991: Drought Cartoon; 1847: Birth of William Ripley Nichols

April 30, 1991: Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

Update:  We now (2017) have a 50 mgd seawater desalination plant in Carlsbad, CA. Naturally, it opened a few months before it started raining like hell in California. But that’s ok. We need to diversify our water sources and not rely solely on what falls out of the sky (or is under the earth).

April 30, 1847: William Ripley Nichols is born. “William Ripley Nichols (April 30, 1847 – July 14, 1886) was a noted American chemist [only 39 years old at his death]. Nichols was born in Boston, Massachusetts, graduated from the Massachusetts Institute of Technology in 1869, and served there as instructor and assistant professor until 1872, when he was elected professor of general chemistry, which chair he retained until his death in Hamburg, Germany. Professor Nichols was recognized as an authority on sanitation, and particularly on water purification, published numerous papers on municipal water supplies, and was active in the pioneering work of the Lawrence Experiment Station. He was a member of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, of which he was Vice President in 1885, and of the German Chemical Society.”

Nichols was also a mentor to Ellen Swallow Richards at MIT. “In 1887, the laboratory, directed by Thomas Messinger Drown, conducted a study under Richards of water quality in Massachusetts for the Massachusetts State Board of Health involving over 20,000 samples, the first such study in America. Her data was used to find causes of pollution and improper sewage disposal. As a result, Massachusetts established the first water-quality standards in America and its first modern sewage treatment plant at Lowell, Massachusetts.”

Commentary: This post completes four years and eight months of daily blogging on This Day in Water History. I started the process to spread the word about water history to those who might be interested, and instead, I ended up teaching myself more than I could have imagined about the field of sanitary engineering and water history in general. Many thanks to all of you who have joined with me on this ride into the past.

October 4, 1921: Death of Hiram Mills

1004 Hiram F MillsOctober 4, 1921Death of Hiram Francis Mills. “Born in Bangor, Maine, in the year 1836 and receiving his early schooling there, the young Hiram Mills moved on to the newly-established Renssalaer Polytechnic Institute to be graduated before he was twenty. When he was in his middle thirties he was appointed Chief Engineer of the Essex Company, the corporate owner of the Merrimack River dam and water power rights at Lawrence, Massachusetts. Ever research-minded, Mr. Mills induced the Essex Company to set up an outdoor hydraulic laboratory on the river bank below the power dam.

In the year 1886 came a momentous change in the direction of Mr. Mills’ scientific interests. In that year he was appointed a member of the recently reorganized State Board of Health. At the first meeting he was chosen by his associates to be chairman of the Board’s Committee on Water Supplies and Sewage; and from hydraulics, Hiram Mills’ chief scientific concern in life turned to sanitation.

The law of 1886, re-creating the State Board of Health, empowered the members to investigate methods for the disposal of sewage, and Hiram Mills lost little time in seeing that the law’s intent was carried out. As the place for his projected studies in the best practical methods for safe sewage disposal, he persuaded the Essex Company to lend to Massachusetts the experimental plant the company had created for his hydraulic researches. With State funds a modest laboratory building was added to the existing structures, and the whole was renamed the Lawrence Experiment Station — the first research enterprise of its kind in our country.

It may fairly be said that the investigations which Mills was to plan and carry through to conclusion in this physically limited and always economically equipped plant laid the foundations for many of the scientific methods of treatment of drinking water and municipal wastes. Instead of investing in elaborate equipment and costly facilities. Mills invested in brains, as frequently he was pleased to point out, To man his researches, Mr. Mills drew upon the faculty and recent graduates of the Massachusetts Institute of Technology and thus employing their varied scientific skills, he perfected a unique investigating team whose inventiveness and productiveness are not likely to be seen again.” [editied by M.J. McGuire]

Commentary: Members of the research team included George W. Fuller, Allen Hazen and William T. Sedgwick. MIT professors William Ripley NicholsEllen Swallow Richards, and Thomas M. Drown also played important early roles. Allen Hazen and George W. Fuller were in charge of some of the earliest research on sewage treatment and drinking water filtration.

April 30, 1991: Drought Cartoon; 1847: Birth of William Ripley Nichols

0430 Drought CartoonApril 30, 1991: Drought Cartoon. The Los Angeles Times has published cartoons over more than 100 years that depict the many droughts that California has suffered and the reactions to them. Here is one that I think you will enjoy.

0430 William Ripley NicholsApril 30, 1847: William Ripley Nichols is born. “William Ripley Nichols (April 30, 1847 – July 14, 1886) was a noted American chemist [only 39 years old at his death]. Nichols was born in Boston, Massachusetts, graduated from the Massachusetts Institute of Technology in 1869, and served there as instructor and assistant professor until 1872, when he was elected professor of general chemistry, which chair he retained until his death in Hamburg, Germany. Professor Nichols was recognized as an authority on sanitation, and particularly on water purification, published numerous papers on municipal water supplies, and was active in the pioneering work of the Lawrence Experiment Station. He was a member of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, of which he was Vice President in 1885, and of the German Chemical Society.”

Nichols was also a mentor to Ellen Swallow Richards at MIT. “In 1887, the laboratory, directed by Thomas Messinger Drown, conducted a study under Richards of water quality in Massachusetts for the Massachusetts State Board of Health involving over 20,000 samples, the first such study in America. Her data was used to find causes of pollution and improper sewage disposal. As a result, Massachusetts established the first water-quality standards in America and its first modern sewage treatment plant at Lowell, Massachusetts.”

Commentary: This post completes three years and eight months of daily blogging on This Day in Water History. I started the process to spread the word about water history to those who might be interested, and instead, I ended up teaching myself more than I could have imagined about the field of sanitary engineering and water history in general. Many thanks to all of you who have joined with me on this ride into the past.